

Relationship between Obesity Indices measured with Body Composition Analyzer and **Carotid Artery Plaques in Korean Middle-Aged Men**

BACKGROUND

- Carotid artery plaques serve as a risk facto for atherosclerosis.
- Abdominal fat, which is measured using a body composition analyzer based on bioelectrical impedance analysis, is associated with several diseases that can lead to atherosclerosis.
- In this study performed in Korean middleaged men, we investigated the association between carotid artery plaques and obesit indices measured with body composition analyzer.

METHODS

- We retrospectively analyzed the data of 32 middle-aged patients from electronic medic records.
- Various obesity indices and carotid artery plaques were evaluated in all participants.
- The Chi-square and t-tests were used to determine differences in carotid artery place based on variables.
- We performed multivariate logistic regression analysis to confirm the effects of obesity in as independent variables associated with carotid artery plaques.

Salie Lee¹, Bassam Yaghmour¹, Soshin Kye^{* 2}

Variable		Odds ratio (95% confidence interval)	p-value*
BMI	Model1	1.147 (1.041-1.263)	0.005
	Model2	1.090 (0.983-1.208)	0.101
Waist Circumference	Model1	1.027 (0.993-1.063)	0.122
	Model2	1.007 (0.971-1.044)	0.707
Waist to Height Ratio	Model1	58.755 (0.155-22291.517)	0.179
	Model2	2.013 (0.004-1148.266)	0.829
Waist to Hip Ratio [†]	Model1	1.089 (1.018-1.165)	0.014
	Model2	1.053 (0.982-1.130)	0.149
Body fat mass	Model1	1.095 (1.032-1.163)	0.003
	Model2	1.062 (0.997-1.131)	0.062
Body fat percentage	Model1	1.081 (1.016-1.190)	0.013
	Model2	1.049 (0.985-1.119)	0.138
Skeletal muscle mass	Model1	1.017 (0.974-1.062)	0.451
	Model2	1.003 (0.959-1.049)	0.896
Visceral fat mass	Model1	1.631 (1.184-2.247)	0.003
	Model2	1.406 (1.006-1.963)	0.046
Subcutaneous fat mass	Model1	1.117 (1.039-1.202)	0.003
	Model2	1.075 (0.995-1.162)	0.068
*Calculate	d by multiv	ariate logistic regression analysis	
†Calculate	ed by 100 ti	mes	
Model 1: a	diusted by	ade	

¹ Department of Pulmonary, Critical Care and Sleep, School of Medicine at UCI, Irvine, CA, USA. ² Department of Family Medicine, National Police Hospital, Seoul, Korea.

- carotid artery plaques.
- media thickness.

DISCUSSION

Visceral fat mass, which can conveniently be measured using a body composition analyzer, may be a useful predictor of increased carotid artery plaques, which serve as a risk factor for atherosclerosis.

Model 2: adjusted by age, hypertension, FBG, TC, TG

Contact Info: <u>saliel@hs.uci.edu</u> Linkedin: Salie Lee

Poster #0053

UCI Health

RESULTS

Patients with hypertension showed a greater number of

Carotid artery plaques were positively correlated with age, body weight, the waist-hip ratio, body fat mass, body fat percentage, visceral fat mass, subcutaneous fat mass, fasting blood glucose, serum total cholesterol, low-density lipoprotein, and triglyceride levels, and the carotid intima-

On multivariate analysis, the visceral fat mass remained independently associated with carotid artery plaques.