Background

• Diabetes mellitus (DM) is the second leading cause of death in South Africa (SA).

• Patients’ education and knowledge are crucial for the self-management of diabetes and improved outcomes.

• No available data on DM knowledge in Eastern Cape Province of SA, with high rate of poorly controlled DM.

• The objective of this study was to assess the level of diabetes knowledge and its associated factors in individuals with diabetes in rural Eastern Cape, South Africa.

Methods

• Design: Prospective, cross-sectional design.

• Setting: Rural Eastern Cape, South Africa.

• Participants: 399 individuals living with DM attending selected primary health care (PHC) facilities.

• Recruitment: Participants were purposively recruited at the out-patient departments of the PHCs.

• Data collection: Questionnaire interview using Michigan Diabetes Knowledge Test tool.

• Data analysis: Descriptive and inferential statistics.

Results

• Median age was 63 years (IQR: 54-70).

• Majority were females (81.7%) and unemployed (82.2%).

• On a scale of 20, knowledge score ranged from 0-17, average of 7.5 (SD±2.2).

• Only employment status (p<0.001) and health facility level (p=0.001) were significantly associated with diabetes knowledge (Table 1).

• Employment status was positively associated with diabetes knowledge.

• But health facility level had a negative association with diabetes knowledge.

Discussion

• Knowledge on the various components of diabetes management in the study setting was below average which is a cause for concern.

• Our findings on diabetes knowledge is comparable to findings from other South African provinces.

• Context-specific interventions to improve the knowledge of diabetes is required and should target unemployed individuals and the community health centres in the region.

Table 1: Ordinary least squares regression showing relationship between patients’ characteristics

<table>
<thead>
<tr>
<th></th>
<th>Unstandardised Coefficient</th>
<th>Standard error</th>
<th>Standardised Coefficient (Beta)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>-0.01</td>
<td>0.01</td>
<td>-0.07</td>
<td>0.218</td>
</tr>
<tr>
<td>Gender</td>
<td>-0.33</td>
<td>0.28</td>
<td>-0.06</td>
<td>0.229</td>
</tr>
<tr>
<td>Level of education</td>
<td>0.35</td>
<td>0.22</td>
<td>0.08</td>
<td>0.121</td>
</tr>
<tr>
<td>Marital status</td>
<td>-0.37</td>
<td>0.24</td>
<td>-0.08</td>
<td>0.127</td>
</tr>
<tr>
<td>Employment status</td>
<td>1.40</td>
<td>0.40</td>
<td>0.18</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>DM family history</td>
<td>0.36</td>
<td>0.22</td>
<td>0.09</td>
<td>0.100</td>
</tr>
<tr>
<td>DM duration</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.493</td>
</tr>
<tr>
<td>Facility level</td>
<td>-0.77</td>
<td>0.23</td>
<td>-0.17</td>
<td>0.001</td>
</tr>
</tbody>
</table>