\#0088
 BMF-219: A Novel Therapeutic Agent to Reestablish Functional Beta Cells and Provide Long-Term Glycemic Control

Author/s:

Juan P. Frias, Sanchita Mourya, Brian Munneke, Mini Balakrishnan, Priyanka Somanath, Thomas Butler

Organizations/Affiliations: Biomea Fusion

Abstract

Background: Inhibition of menin drives an increase in beta-cell proliferation and function. BMF-219, an oral menin inhibitor, is being developed to manage diabetes. Herein we summarize BMF-219 ex-vivo human islet and T2D clinical data.

Methods: BMF-219 was evaluated in ex-vivo human islet cultures to assess beta-cell function and proliferation. In T2D, a randomized, double-blind, placebo-controlled study is ongoing. We report patients treated with BMF-219 100mg QD for 4 weeks, followed until Week 26. Endpoints include glycemic efficacy and safety.

Results: With human islet microtissues cultured for 2-3 weeks under high glucose conditions, BMF-219 increased the fraction of proliferating beta cells resulting in an increase in insulin content and glucosestimulated insulin secretion. Gene expression changes with CCNA2 and PbK were observed, supporting beta cell proliferation, consistent with published data. Twenty T2D patients received BMF-219 100mg QD for 4 weeks (with or without food). A reduction in HbA1C of 0.5% or greater was seen in 50% patients at Week 4 , which improved to 60% at Week 12. A sustained reduction $\geq 0.5 \%$ was seen in 40% patients at Week 26 . At this timepoint, 20% of patients experienced $\geq 1 \%$ HbA1c reduction, with a maximum reduction of 2.5%. BMF-219 was well tolerated (no SAEs or dose discontinuations).

Conclusions: In ex-vivo cultured islets, BMF-219 improved human beta-cell function and proliferation. In T2D, BMF-219 for 4 weeks resulted in meaningful HbA1c reductions at treatment completion (Week 4) and during the 26 -week follow-up. Combined results support BMF-219 mechanism of action of beta-cell preservation, reactivation, and proliferation.

