The utility of novel CGM metrics in the LGA newborn prediction in women with type 1 diabetes – assessment of the cut-off values

Authors: Rafał Sbiak1, Beata Mierzewska-Rogacz1, Paweł Gutaj1, Urszula Mantaj1, Ewa Wender-Ozegowska1

1 Department of Reproduction, Poznan University of Medical Sciences, Poznan, Poland. 2 Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland.

ABSTRACT

Background: Pregnant women with type 1 diabetes (T1D) are at high risk of multiple pregnancy-related complications associated with poor glycemcic control and pathologically raised insulin resistance that continuously increases throughout the pregnancy. The use of continuous glucose monitoring (CGM) devices significantly reduces the incidence of large for gestational-age (LGA) newborns in individuals with T1D.

Objective: We aimed to assess the utility and determine optimal novel CGM metrics cut-off values in the early prediction of LGA in pregnancies with T1D.

Methods: The study cohort included 75 pregnant women with T1D treated with insulin pumps with CGM devices. We measured the HbA1c and collected the anthropometric and CGM data in each trimester. Analysis of the first and second trimester CGM data, we calculated several CGM indices reflecting the measure of short and long glucose fluctuations. We assessed the utility in the early prediction of LGA and estimated optimal cut-off points in a receiver operating characteristic (ROC) analysis.

Results: Even though most of the patients achieved target HbA1c and time-in-range (TIR) values throughout the pregnancy, 33% of babies were born LGA. The ROC analysis revealed that the calculated CGM parameters were significantly associated with the LGA. In most cases, area under the curve (AUC) values revealed that we aimed to conduct ROC analysis and establish optimal CGM metrics’ cut-off values predicting the risk of LGA.

Conclusions: Several novel CGM metrics of glucose fluctuations may be applicable in the LGA prediction in patients with T1D; however, more extensive clinical trials are necessary.

BACKGROUND AND AIM

The results of randomized controlled trials revealed that CGM use in pregnancy significantly improves maternal long-term glycemic control pronounced by glycemic hemoglobin measurements and reduces the risk of neonatal complications such as, LGA, hypoglycemia, and prolonged hospitalization.

In our recent publications, we reported that the risk of LGA is associated with several CGM metrics reflecting high glycemic swing [1]. In the further study, we aim to conduct ROC analysis and establish optimal CGM metrics cut-off values predicting the risk of LGA.

MATERIAL AND METHODS

We conducted a single-center retrospective cohort study. Study group included 75 pregnant patients with type 1 diabetes treated with insulin pumps and CGM devices (Medtronic Real-Time 722 insulin pumps, and Medtronic MiniMed™ Paradigm Veo™ and Medtronic MiniLink™ REAL-Time transmitters and Enlite™ sensors). Recruited patients met the following inclusion criteria: age 18-45 years, had a documented history of type 1 diabetes for at least 12 months at the enrollment and were at 13 weeks and six days gestation or less at baseline. We excluded patients in multiple pregnancies and individuals with early pregnancy loss.

We measured the patients’ weight gain and HbA1c values in the three consecutive trimesters of pregnancy (the first visit scheduled at 13 weeks and six days gestation or less, second between 20 and 24 weeks, and third between 33 and 39 weeks pregnancy) and collected the data about pregnancy complications and perinatal outcomes (gestational age, macrosomia >4000g, LGA births >97th centile, and LGA births >97.7th centile). Calculated percentiles were adjusted for maternal ethnicity, weight, height, parity, and the infant’s sex and gestational age using GROW v.8.0.6.1 calculator [3]. We used data obtained from the CGM sensors to calculate glycemic control parameters - mean glucose values; time spent in TIR (>63%); TAR (>140 mg/dl); TBR (<54 mg/dl); MAGE and LBGI (≤15.0 mg/dl), TIR (63-140 mg/dl); %; LBGI (≤15.0 mg/dl); %; HBGI (≥1.8 mg/dl); %; and may be used as additional markers to predict the risk of LGA

CONCLUSION

Our study proved that several CGM metrics attributed to increased glucose fluctuations are associated with the LGA risk and may be used as additional markers to predict the risk of LGA in patients with T1D using near-term glycemic hemoglobin levels. Nonetheless, their efficacy should be further tested in larger randomized-controlled clinical trials.

REFERENCES

3. GRADE hyper >56.6 (87.5%; 60.5%) GRADE hyper >45.2 (100%; 38.1%).
4. CONGA2h >28.3 (87.5%; 57.9%).
5. Mean >121.4 mg/dl (95.0%; 44.2%).
6. CONGA4h >28.3 (87.5%; 44.2%).
7. TIR (63-140 mg/dl); % (95.0%; 44.2%).
8. LBGI (≤15.0 mg/dl); % (81.2%; 57.9%).
9. HBGI (≥1.8 mg/dl); % (63.2%; 64.3%).
10. TIR (63-140 mg/dl); % (95.0%; 44.2%).
11. LBGI (≤15.0 mg/dl); % (81.2%; 57.9%).
12. HBGI (≥1.8 mg/dl); % (63.2%; 64.3%).
13. GRADE hyper >56.6 (87.5%; 60.5%) GRADE hyper >45.2 (100%; 38.1%)
14. CONGA2h >28.3 (87.5%; 57.9%).
15. Mean >121.4 mg/dl (95.0%; 44.2%).
16. CONGA4h >28.3 (87.5%; 44.2%).
17. TIR (63-140 mg/dl); % (95.0%; 44.2%).
18. LBGI (≤15.0 mg/dl); % (81.2%; 57.9%).
19. HBGI (≥1.8 mg/dl); % (63.2%; 64.3%).
20. TIR (63-140 mg/dl); % (95.0%; 44.2%).
21. LBGI (≤15.0 mg/dl); % (81.2%; 57.9%).
22. HBGI (≥1.8 mg/dl); % (63.2%; 64.3%).

CONTACT INFORMATION

RAFAŁ SBIAK, MD
rafasbiak@student.ump.edu.pl

Ewa Wender-Ozegowska, MD, Ph. D.
ewozegow@ump.edu.pl

19th Annual WORLD CONGRESS INSULIN RESISTANCE DIABETES & CARDIOVASCULAR DISEASE, Los Angeles, CA, December 2-4, 2021