Statins and diabetes: The missing link

Joshua W. Knowles, MD PhD Stanford

http://med.stanford.edu/knowleslab.html knowlej@stanford.edu

@joshuawknowles

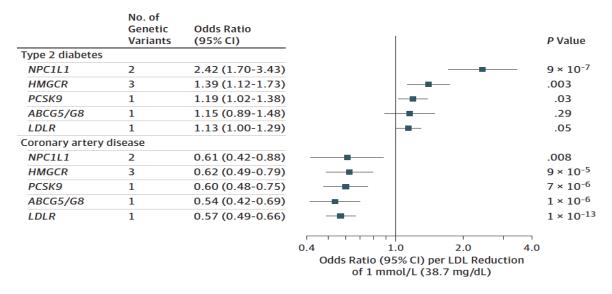
https://thefhfoundation.org/

Stanford

- Jerry Reaven
- Fahim Abbasi
- Sun Kim
- Chelsea Harris
- Vander Harris
- Pragya Tripathi
- Mike Snyder
- Cindy Lamendola

Lower LDL-C levels are associated with increased risk of T2D and decreased risk of CAD

Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials


Naveed Sattar, David Preiss, Heather M Murray, Paul Welsh, Brendan M Buckley, Anton J M de Craen, Sreenivasa Rao Kondapally Seshasai,

	n	Statin		Placebo or control					OR (95% CI)	
		Events	Rate	Events	Rate					
ASCOT-LLA ⁷	7773	154	11.9	134	10-5			-	1.14 (0.89–1.46	
HPS ⁸	14573	335	9.2	293	8-0		+++		1.15 (0.98-1.35	
JUPITER4	17802	270	16.0	216	12-8		-		1·26 (1·04-1·51	
WOSCOPS ⁵	5974	75	5.2	93	6.5 ——	-			0.79 (0.58-1.10	
LIPID ⁶	6997	126	6.0	138	6.6		-		0.91 (0.71-1.71)	
CORONA ⁹	3534	100	20.9	88	18.5				1.14 (0.84-1.55	
PROSPER ¹²	5023	165	20.5	127	15.8		-		1.32 (1.03-1.69	
MEGA ¹³	6086	172	10.8	164	10-1		-		1.07 (0.86-1.35	
AFCAPS/TEXCAPS18	6211	72	4.5	74	4.6		-		0.98 (0.70-1.38	
4S ¹⁵	4242	198	17.3	193	16.8				1.03 (0.84-1.28	
ALLHAT ¹⁴	6087	238	16.4	212	14.4				1.15 (0.95-1.41	
GISSI HF16	3378	225	34.8	215	32.1			 	1.10 (0.89-1.35	
GISSI PREV ¹⁶	3460	96	27.5	105	30-6		-		0.89 (0.67–1.20	
Overall (I ² =11·2% [95%	CI 0-0-50-29	%])						>	1.09 (1.02-1.1)	
				0)-5		1.0		2.0	

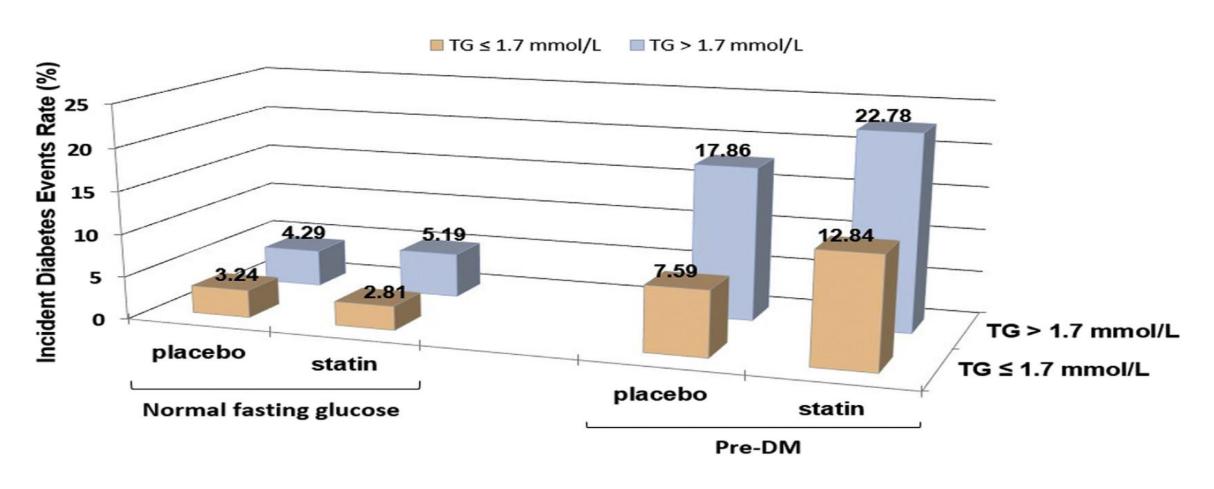
JAMA | Original Investigation

Association Between Low-Density Lipoprotein Cholesterol-Lowering Genetic Variants and Risk of Type 2 Diabetes A Meta-analysis

Luca A. Lotta, MD, PhD; Stephen J. Sharp, MSc; Stephen Burgess, PhD; John R. B. Perry, PhD; Isobel D. Stewart, PhD;

Clinical trial evidence

Genetic evidence

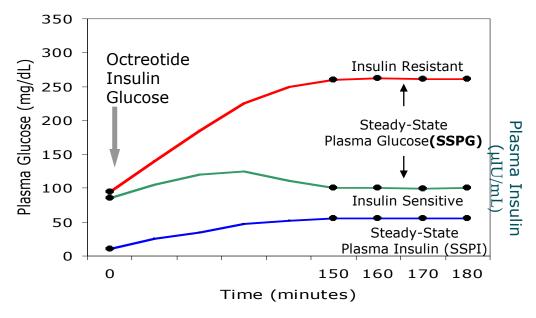

Clinical Chemistry 63:7

Perspective

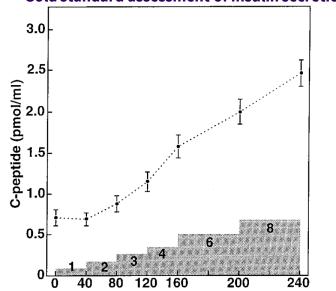
Leveraging Human Genetics to Understand the Relation of LDL Cholesterol with Type 2 Diabetes

Erik Ingelsson^{1,2*} and Joshua W. Knowles^{1,2}

Statins particularly increase the risk of T2D in those with prediabetes and insulin resistance



Kohli, Knowles et al. AJC. 2016


What is the mechanism of statinassociated diabetes?

- Diabetogenic effect of statins:
 - Increased insulin resistance?
 - Impaired β-cell compensation?

Modified Insulin Suppression Test (IST) Gold standard assessment of insulin sensitivity

Graded Glucose Infusion Test (GGIT)
Gold standard assessment of insulin secretion

Trial design

Participants eligible for statin therapy*

- Primary prevention but statin naïve
- Non-diabetic
- > 5% risk of CVD over 10 years
 - Or hsCRP > 2 mg/L
 - Or LDL ≥ 130 mg/dl
- No contraindication to statin

NCT 02437084

* Per 2013 AHA Guidelines

** Statin dosing per AHA Guidelines

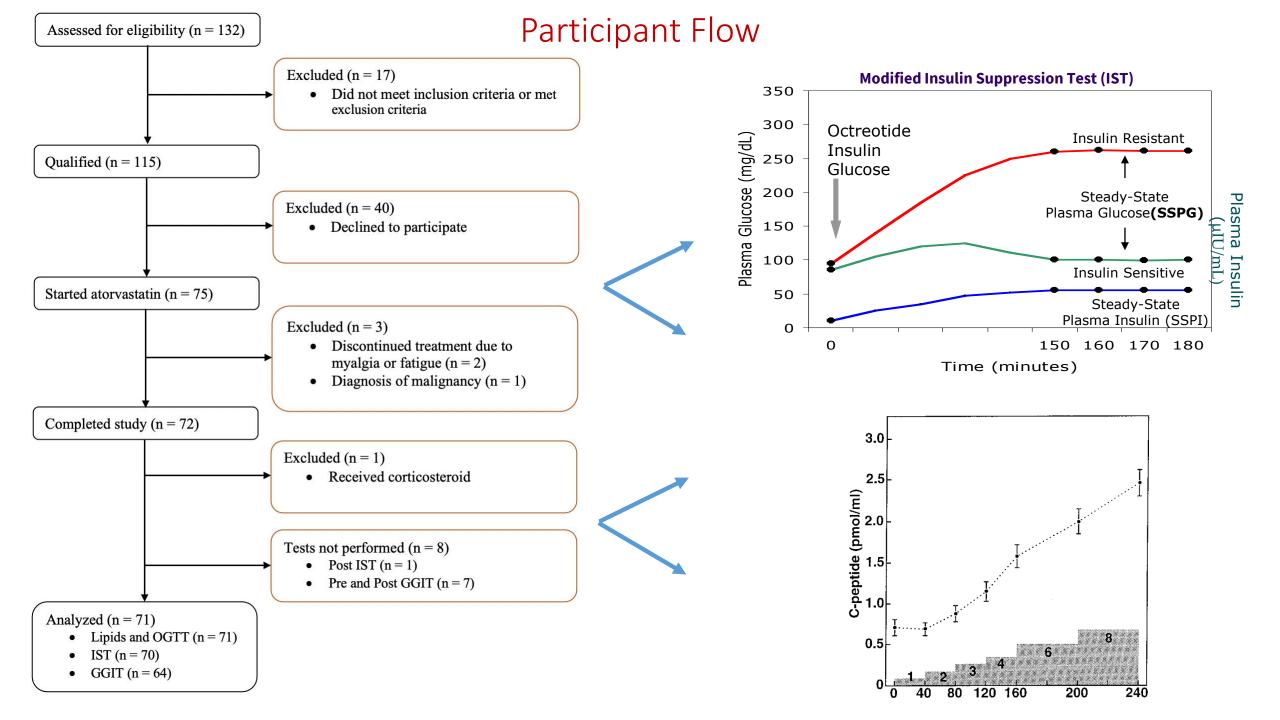
Recruit across a range of insulin sensitivity (targeted recruitment of TG > 150 mg/dl, more insulin resistant as a group)

OGTT, Insulin suppression test, Graded glucose infusion, Metabolic and lab characterization, iPOP profiling

Statin therapy**, 10 weeks

OGTT, Insulin suppression test, Graded glucose infusion, Metabolic and lab characterization, iPOP profiling

Primary Outcome Measures:


- Change in insulin sensitivity
 - Insulin Sensitivity: Steady-state plasma glucose concentration (mg/dL) measured during the insulin suppression test (IST)
 - Time Frame: Change from baseline to 9 -10 weeks in insulin sensitivity
- Change in insulin secretion
 - Insulin secretion: Insulin secretion rate AUC (pmol/min x 4 h) measured during the graded glucose infusion test (GGIT)
 - Time Frame: Change from baseline to 9 -10 weeks in insulin secretion

Secondary Outcome Measures:

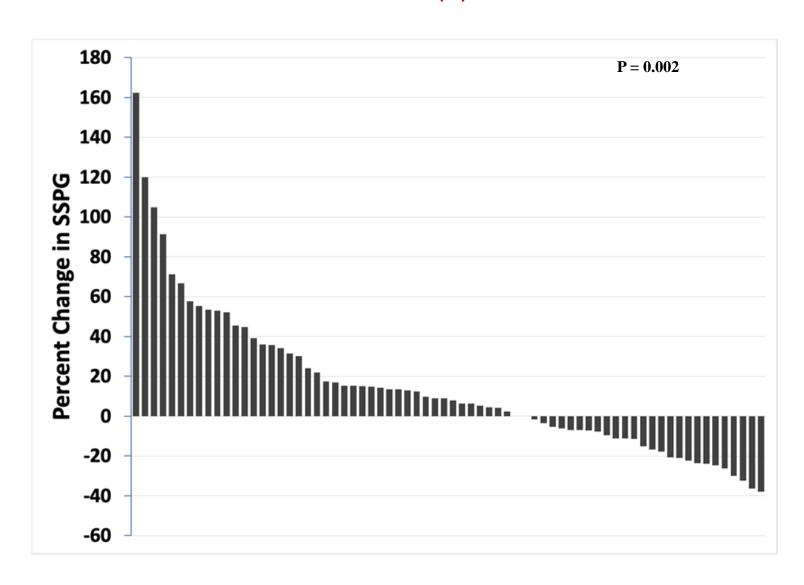
- Change in fasting plasma glucose and fasting plasma insulin
 - o Fasting plasma glucose and insulin
 - o Time Frame: Change from baseline to 8 10 weeks in fasting plasma glucose and insulin
- Change in OGTT glucose AUC and insulin AUC
 - OGTT glucose AUC (mg/dL x 2 h) and OGTT insulin AUC (mU/L x 2h)
 - Time Frame: Change from baseline to 8 weeks in OGTT glucose AUC and insulin AUC

Prespecified Subgroup Analyses

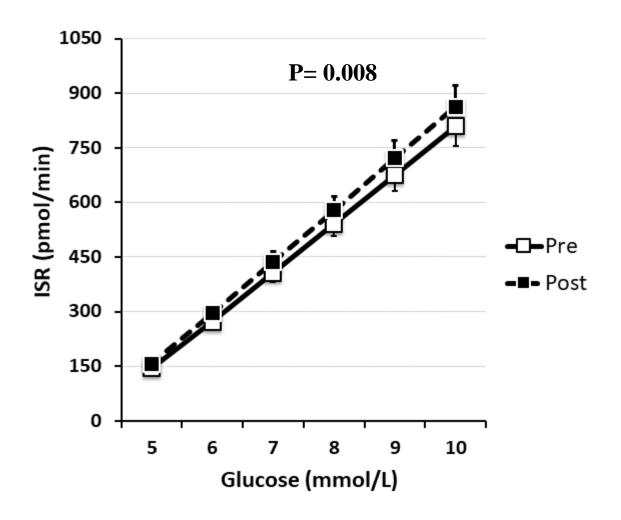
Determine if significant deterioration of insulin action and/or secretion following statin treatment will be confined to those with baseline insulin resistance.

Table 1 - Baseline Characteristics of Study Subjects (n = 71)

Age, years		61 (53 – 64)
Female, n (%)		26 (36.6)
Race, n (%)		
	African American	2 (2.8)
	East Asian	11 (15.5)
	Hispanic	4 (5.6)
	South Asian	6 (8.5)
	Two or more races	2 (2.8)
	White	46 (64.8)
BMI, kg/m ²		27.8 (24.8 – 30.7)
Waist circumference,	99.0 (89.5 – 105.7)	
Systolic BP, mm Hg	124 (114 – 132)	
Diastolic BP, mm Hg	79 (74 – 84)	
Heart rate, bpm	65 (58 – 72)	


Data are median (interquartile range) or number (%) of subjects.

Effect of Atorvastatin on Weight, Lipids and hs-CRP (n = 71)


Variable	Baseline	End of Study	P
Weight, kg	83.1 (70.6 – 95.6)	84.7 (68.4 – 93.3)	0.92
Total cholesterol, mg/dL	237 (205 – 256)	149 (125 – 162)	<0.001
LDL cholesterol, mg/dL	156 (130 – 172)	69 (61 – 84)	<0.001
Triglycerides, mg/dL	109 (70 – 150)	78 (59 – 115)	<0.001
HDL cholesterol, mg/dL	51 (43 – 63)	53 (43 – 64)	0.73
hs-CRP, mg/L	1.1 (0.6 – 2.3)	0.7 (0.4 – 1.8)	0.002

Data are median (interquartile range). Triglycerides and hs-CRP were log-transformed for statistical analysis. Means were compared by paired sample t tests. hs-CRP data were analyzed on 69 subjects; HDL indicates high-density lipoprotein; hs-CRP, high-sensitivity C-reactive protein; and LDL, low-density lipoprotein.

Effect of Atorvastatin Therapy on Insulin Resistance

Effect of Atorvastatin Therapy on Insulin Secretion (n = 64)

Data are mean (SEM)

Conclusions

- Short-term, high intensity statin use is associated with an increase in insulin resistance and insulin secretion
- Study forms the basis for longer-term studies
- Understanding the mechanism of statin—associated T2D will lead to more tailored recommendations and ultimately better outcomes