CME Conference | December 2-4, 2021 Hilton Universal Hotel, Los Angeles, CA

BACKGROUND

Oxidative stress, obesity and metabolic syndrome are implicated in the physiopathology of hypertension. Visceral adipose tissue is a regulating tissue of lipid metabolism, but it plays a major endocrine role by the secretion of adipocytokines, and controls insulin sensitivity.

OBJECTIVES

The aim of this work is the determination of oxidized LDL and antioxidant vitamins (A/E) levels in hypertensive patients, and correlate to the studied metabolic parameters linsulin resistance and Metabolic syndrome (MS)

METHODS

It is a prospective descriptive study, performed in 245 Algerian hypertensive patients, mean age: 57 (8,49) years, 118 women and 42 men. A fasting metabolic assessment was performed (glycemia, renal status, a complete lipid profile: total cholesterol, triglycerides, HDLc, LDLc, CRPus and insulinemia), these parameters were determined by methods certified on Cobas 6000. Insulin resistance was estimated by the HOMA-IR, coupled with anthropometric measurements (weight, BMI and waist circumference). Leptin, adiponectin and oxidized LDL were determined by ELISA, antioxidant vitamins (A/E) were measured by HPLC.

	HTA(with MS) (N=115)	HTA(without MS) (N=130)	p
Leptine (ng/ml)	38,22 (24,31)	33,34 (19,62)	0.10
Adiponectine (ng/ml)	6,92 (3,18)	8,74 (5,02)	0.046
Oxidized LDL (µg/ml)	4,58 (3,74)	2,16 (1,41)	<10 ⁻⁵
HOMA-IR	2.95 (1.61)	2.07 (1.38)	0,002
GPx (U/gHb)	71,66 (25,67)	72,76 (29,21)	0.82
SOD (U/grHb)	879,76 (369,85)	861,65 (383,31)	0.74
Vitamine A (µmol/l)	1,89 (0,48)	2,03 (0,69)	0.06
Vitamine E (µmol/l)	23,09 (8,10)	25,28 (6,73)	0.002
Index alpha tocopherol	3.53 (1.29)	4.30 (1.28)	<10 ⁻⁶

Adipocytokines and oxidative stress in HTA patients according to MS

Interaction between Metabolic syndrome and oxidative stress in hypertensive patients

OTMANE.A, KASDI F, IBOUCHRITEN N, MAKRELOUF.M, ZENATI.A Biochemistry and genetic Laboratory, University hospital of BAB EL OUED/ University of Algiers, Algeria

In our study, hypertensive women predominate with 89.42%, compared to men (20.58%). The age group [50-59 [years represents 42.85%, followed by hypertensives over than 60 years (30.35%). HTA was diagnosed <5 years for the 40,81% of patients, followed by those with hypertension \geq 10 years (24.5%). 88% of them are followed and treated for their hypertension. The most prescribed antihypertensive in our patients are ARAII (48.83%), diuretics (33.02%) and calcium channel blockers (25.11%). The prevalence of metabolic syndrome, as defined by NCEP-ATPIII in our series is 47,35%, we observed that 45% of patients are sedentary, 47% are overweight and 36.25% of them are obese. The prevalence of insulin resistance evaluated by the HOMA index is 45%. Leptinemia results in patients show that the concentration is 38.22(24.31) ng / ml in HTA with MS, and 33.34(19.62) HTA without MS. It is higher in obese hypertensive patients.

For adiponectin, there is a statistically significant difference (p = 0.046), with a mean low concentration for the MS + group 6.92 (3.18) ng / ml, whereas for HTA without MS the mean concentration is higher 8.74(5.02) ng / ml. For oxidized LDL, 4.58 (3.74) μ g / ml MS + and 2.16 (1.41) μ g / ml were found for the group without MS, with p <10-5. For the HOMA-IR, there is a significant difference between the two groups (p = 0.002), the patients with MS have a marked IR compared to the HTA without MS. Statistical analysis reveals in HTAs with MS that there is a positive and significant correlation between leptin and anthropometric parameters (TT, BMI, weight) and with HDLc. A negative correlation with TG. Our preliminary results implicated an increased oxidative stress in hypertensive patients with MetS and a decreased antioxidative defence (vitamin E: p=0,002/ alpha-tocopherol: p<10⁻⁶, that correlated with serum leptin and anthropometric biomarkers (BMI, waist circumference). In patients with stage 1 and 2, there is a significant difference between the 2 groups according the MS in vitamin A (p=0,005), vitamin E $(p<10^{-7})$, oxLDL (p=0,003), CRP (p=0,01), UA (p=0,05), leptine (p=0,007) and adiponectine (p=0,02).

conclusion

In our series, the preliminary results s important metabolic role of adipocytok interact directly with the insulin signal their measurement with the antioxidar complete the metabolic balance espec patients with metabolic syndrome.

^{1/} Rahmouni K, Morgan DA, Morgan GM, Mark AL & Haynes WG. obesity-hypertension. *Diabetes* 2005 ; 54 : 2012–2018. 2/ Bjorbaek C & Kahn BB (2004). Leptin signaling in the central nervous system 331 3/ Manrique C, DeMarco VG, Aroor AR, Mugerfeld I, Garro M, Habibi J, H induce early development of diastolic dysfunction in young female mice fed a \ 4/ do Carmo JM, da Silva AA, Wang Z, Freeman NJ, Alsheik AJ, Adi A, Hall JE leptin after inactivation of insulin receptor substrate 2 signaling in the *Hypertension* 2016 ; 67:378–386.

5/ Bogaert YE, Linas S. The role of obesity in the pathogenesis of hypertension 6/ Sattar N, Wannamethee G, Sarwar N, Tchernova J, Cherry L, Wallace AM, disease: a prospective study and meta-analysis. Circulation 2006; 114:623-62 7/ Rasouli N, Kern PA. Adipocytokines and the metabolic complications of obes

8/ Avilés-Plaza.F, Bernabé.J, Begoña.C, Marhuenda.J, Zafrilla P et al. Bi Patients, a Case Control Study. J Metabolic Syndrome, 2015; Num 4: issue 4 9/ Gerber P.A, Dragana N, Manfredi R. Small, dense LDL: an update. Current

RESULTS AND DISCUSSION

	oxydative and cardiometabolic parameters in patients stage 1 and 2				
suggest that there is an	HTA stage 1 and 2	HTA with MS	HTA without MS		
okines and oxLDL, they		(n=43)	(n=46)	Р	
al transmission pathways,	PAS (mmHg)	147 (12,61)	146 (10,08)	0.68	
ant vitamins allows to	PAD (mmHg)	92,14 (7,17)	84,64 (10,82)	0.0003	
ecially in hypertensive	HOMA-IR	2,56 (1,22)	2,24 (0,96)	0.18	
	LDL ox (µg/ml)	2,79 (2,45)	1,575 (0,87)	0.003	
	GPx (U/gHb)	75,55 (25,78)	75,12 (35,34)	0.95	
. Role of selective leptin resistance in diet-induced	SOD(U/gHb)	835,48 (313,03)	732,79 (234,46)	0.09	
ystem and the periphery. <i>Recent Prog Horm Res</i> 59, 305–	CRP(mg/l)	6,96 (6,24)	3,74 (5,9)	0.01	
Hayden MR, Sowers JR. Obesity and insulin resistance a Western diet. <i>Endocrinology</i> 2013; <i>154</i> : 3632–3642. JE. Regulation of blood pressure, appetite, and glucose by the entire brain or in proopiomelanocortin neurons. ion. <i>Nat Clin Pract Nephrol</i> 2009 ; 5:101–111.	Ac urique (mg/l)	46,23 (13,84)	41,21 (11,49)	0.05	
	Leptine (ng/ml)	39,19 (20,33)	27,08 (19,63)	0.007	
	Adiponectine (ng/ml)	8,85 (4,01)	7,01 (3,09)	0.02	
I, Danesh J, Whincup PH. Adiponectin and coronary heart 629.	vitamine A (µmol/l)	1,68 (0,57)	2,18 (0,72)	0.005	
Desity. <i>J Clin Endocrinol Metab</i> 2008 ; 93:S64–S73. Biomarkers of Oxidative Stress in Syndrome Metabolic 4 :4. nt Opinion in Cardiology; 2017, Volume 32 - Issue 4: 454–	vitamine E (µmol/l)	17,74 (11,12)	34,33 (12,18)	<10 ⁻⁷	
	Index tocophérol	2,82 (1,86)	5,84 (1,99)	<10 ⁻⁷	
τ opinion in Caldiology, 2017 , volume of -13300 -1.404					

