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Professor Gerald M Reaven 28 July 1928–12 February 
2018.

Professor in Medicine, Stanford University, School of 
Medicine, Stanford, CA, USA.

2018 was a distinct year; on 12 February, Gerald M Reaven 
– Jerry – passed away, peacefully at home. The year was 
marked with anniversaries. It was the 30-year anniversary 
to Gerald Reaven’s Banting lecture 1988: Role of Insulin 
Resistance in Human Disease where he introduced 
‘Syndrome X’, and when I saw Jerry for the first time – an 
occasion I’ll discuss later. It was the 20-year anniversary 
to our partnership in education and scientific initiatives. 
2018 also marked the 15-year anniversary of the founding 
of The World Congress on Insulin Resistance Diabetes and 
Cardiovascular Disease (WCIRDC).

The 16th WCIRDC, 29 November–1 December 2018, 
was dedicated to honour and celebrate Jerry’s science and 
life. There was a special session ‘The Metabolic 
Syndrome Revisited: A Salute to Gerald Reaven, MD’ 
chaired by Ralph DeFronzo and Peter Grant and included 
a presentation by Peter Reaven, an endocrinologist – 
Jerry’s son, as well as lectures by Jerry’s colleges, cor-
roborators and past fellows and the renamed award and 
keynote lecture: ‘Gerald Reaven Distinguished Leader in 
Insulin Resistance’.

The beginning

Jerry was born in Gary, IN, USA, grew up in Cleveland, 
OH, USA, where he developed his love for baseball. He 
attended the University of Chicago as an undergraduate 
and for medical school. After serving in the US Army 
Medical Corps in Europe, he completed his internal 

medicine residency at the University of Michigan in Ann 
Arbor. He joined the Stanford School of Medicine faculty 
in 1960, in the endocrinology division. He progressed to a 
full professorship in 1970. Jerry led endocrinology and 
gerontology eventually, after semi-retirement, he joined 
the cardiovascular division. Jerry was captivated by the 
findings of Himsworth, in the mid 1930s, that a large num-
ber of patients with diabetes are ‘insulin insensitive’,1 a 
finding that went dormant for many years. In 1970, Reaven 
argued for the existence of insulin resistance (IR), a dimin-
ished response to the hormone insulin, in people with type 
2 diabetes mellitus (DM). At that time, a controversial con-
cept was met with huge opposition. Jerry demonstrated, by 
a quantitative method to measure insulin-mediated glucose 
uptake in humans, that there are variable degrees of IR in 
healthy population and those with type 2 diabetes (T2D). 
In 1984, the National Diabetes Data Group endorsed the 
concept and referred to T2D as non-insulin-dependent dia-
betes mellitus (NIDDM) and that resistance to insulin-
stimulated glucose uptake is a characteristic finding in 
patients with NIDDM and impaired glucose tolerance. 
Jerry did not stop there; he went further to show how IR 
and hyperinsulinaemia have a role in cardiovascular dis-
ease (CVD) in people who do not have diabetes.

When we met

I recently re-read the 1988 publication of Jerry’s Banting 
Lecture 1988: Role of Insulin Resistance in Human 
Disease.2 I was amazed at his vision and foresight. In 
today’s medical literature, where 3 years is already old 
news, this 30-year-old paper represents science which is as 
fresh and relevant today. In his lecture, Jerry introduced 
the novel idea of a link between IR and a cluster of meta-
bolic abnormalities that together greatly increased the risk 
for CVD. He concluded that there is a series of related 
variables – which he named syndrome X – that tends to 
occur in the same individual and may be important in the 
aetiology of coronary artery disease (CAD). These changes 
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included hyperglycaemia, hyperinsulinaemia (the corol-
lary of IR), an increased triglyceride (TGL), a decreased 
high-density lipoprotein cholesterol (HDL-C) and high 
blood pressure. The common feature of the proposed syn-
drome is IR, and all other changes are secondary to it. All 
five of the proposed consequences have been shown to 
increase the risk of CAD.

I met Jerry at the Medical School of the University of 
Southern California where I was a first-year fellow in a 
unique diabetes-endocrinology programme. At our weekly 
endocrine fellows’ grand round, Jerry, following his 1988 
Banting Award, lectured on the relationship of insulin to 
HTN. Like so many others, those days we just did not get 
it, we laughed. I actually thought that it was some kind of 
a hoax that he was just using his stature to lecture on issues 
regardless of how scientifically sound they were.

And yet, his lecture stuck with me. Couple of years later, 
when I was already in clinical practice, I started reading 
Jerry’s and others’ work on IR and suddenly everything 
clicked. I became a fan. In fact, I utilized the IR concepts 
– though primarily researched based, in my practice. As 
such, I was an early adopter of Metformin (introduced in 
the United States only in 1995) and thiazolidinediones 
(TZDs). Couple of years later, Jerry and I met at a small 
medical meeting in Palm Springs. Jerry was a speaker, and 
he came with his wife Eve. I was with my wife and our two 
small kids. Jerry had a name as a tyrant, a very hard person 
to work with, not pleasant to fellows, faculty and col-
leagues. People were fearful of him. I was not aware of any 
of it. I found his lecture to be great. At the end of the day, 
there was a group dinner. A whole ballroom for a mere 30 
people or less. We were first with the kids; suddenly a 
woman comes down, she looked around, all the tables were 
empty and asked if she could join us. ‘Of course’. ‘I hope 
you won’t change your mind when my husband joins us’ – 
surely Eve was aware of Jerry’s reputation. When Jerry 
came, he and I went for a drink, turns out we both liked gin 
martini with olives – a good way to start a relationship with 
Jerry. Over drinks, I told him of what I had thought of him, 
and his work, when I heard him first. He laughed, and we 
became friends.

Developing education and initiatives

We shared similar views on the role of IR, Jerry as a 
researcher and I as a clinician. We named our first educa-
tion meeting in 1998 ‘Syndrome X, Diabetes and beyond’ 
with a focus on CVD. In the following years, we kept 
searching our goals based on published data and ‘popular’ 
directions. In 1999, we called the meeting ‘Syndrome X, 
Diabetes, Obesity & The Heart’; in 2000, we added HTN to 
the name. In 2001, we changed to ‘The Metabolic- Insulin 
Resistance- Syndrome X’. At that time, the NCEP/ATPIII 
published their definition of the metabolic syndrome. In 
fact, following Jerry’s 1988 syndrome X, the World health 

Organization (WHO) published in 1998 their version of the 
syndrome which they already called metabolic syndrome, 
followed by the EGIR: European Group for Insulin 
Resistance that also used the name metabolic syndrome 
with similar definition. The AACE/ACE (American 
Association of Clinical Endocrinologists/American College 
of Endocrinology) convened a consensus to address syn-
drome X versus metabolic syndrome. I recruited Jerry to 
join ACCE and be a co-chair with Dan Einhorn and myself. 
The AACE/ACE elected to call it the insulin resistance syn-
drome (IRS) over the metabolic syndrome.3 Although we 
recognized the clinical utility of metabolic syndrome, with 
criteria similar to the Metabolic  Syndrome, to identify peo-
ple at risk for Diabetes and CVD, we preferred the IRS not 
just because it presents the pathophysiologic role of IR, but, 
more importantly, it extends its clinical impact to many 
other conditions beyond DM and CVD.

The IRS

IR and hyperinsulinaemia presentations is often deter-
mined by the difference in resistance of various tissues and 
organs. Many, if not most, of the adverse events attributed 
to IR are secondary to the effects of compensatory hyper-
insulinaemia (an attempt at preventing the decompensa-
tion of glucose homeostasis) on tissues that still have 
normal insulin sensitivity. Compensatory hyperinsulinae-
mia acts on the kidney to retain salt and water, which may 
explain the development of essential hypertension, and it 
decreases uric acid clearance by the kidneys, increases 
sympathetic nervous system activity and increases preva-
lence of certain cancers. It also impacts the ovaries where 
insulin stimulates testosterone secretion, as well as affect-
ing other glands including the thyroid. Following Jerry’s 
research, he proved Himsworth’s concept that IR is part of 
the pathophysiology of T2DM. Jerry than extended the 
concept to syndrome X – linking IR to CVD, eventually 
demonstrating that the IRS leads to many other associated 
conditions: hypertension, coronary artery disease, poly-
cystic ovarian syndrome (PCOS), non-alcoholic liver dis-
ease (NAFLD), certain forms of cancer and obstructive 
sleep apnoea, congestive heart failure and cognition.4

Jerry was often misunderstood. Although he recognized 
the impact of obesity on IR, he also differentiated obesity 
from IR, specifically highlighting the risk of IR in normal-
weight patients. He recognized the importance of the met-
abolic syndrome although he preferred the more inclusive 
IRS. He, and I and AACE included hyperglycaemia, but 
not diabetes as part of the syndrome. We believed that once 
diabetes develops, we have approved medications and 
guidelines to manage the condition, while there are cur-
rently no approved medications for the IRS. Our concern 
was to be able to identify them early, intervene and prevent 
the development of DM and CVD. However, because of 
Jerry’s combative – debate like – preaching of his 
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concepts, he was wrongly accused for discounting obesity 
and metabolic syndrome. The criticism did not sway him, 
and he has always fought for his – pure – science and data-
based principles.5

The world congress of IR diabetes and 
CVD

In 2003, we agreed that we should elevate our education 
efforts. There was a great need to understand the many 
faces of IR. To both myself, a community physician, and 
Jerry, from academia, there was a need to extend the 
impact of IR from the research arena to clinical practice. 
To be able to cover all the fields which relate to IR, we 
founded the International Committee for Insulin Resistance 
(ICIR) with experts in diabetes, cardiology, obesity, lipids, 
cancer, PCOS, liver, paediatrics as well as researchers and 
clinicians. At Jerry’s suggestion, we started an abstract 
programme, initially with the journal Diabetes and 
Vascular Disease Research, followed by Endocrine 
Practice. Jerry provided vision and leadership, teaching 
me the unwavering search for truth, to be scientifically 
honest and follow the data. The World Congress on Insulin 
Resistance Syndrome DM & CVD has become the main 
stage where globally recognized scientists and clinicians 
present and share their knowledge. As the congress pro-
gressed, its strength became from its fabulous international 
faculty. A lot of this success was due to following Jerry’s 
principle ‘if the speaker does not have anything of value to 
say- why should he or she say it here?’ Scientifically, the 
congress developed from a mere ‘Getting to the Heart of 
the Matter’ to ‘Exploring New Frontiers in Metabolism- 
Tomorrow’s Clinical Science Today’.

Friendship

Jerry proved to be a renaissance man, knowledgeable, 
witty and with an exquisite taste in food, drinks, music and 
life. He had the reputation of being rough and unkind, and 
though he could be difficult and demanding at times, I 
actually found him to be warm, generous, social and help-
ful. His intelligence and analytical mind contributed 
greatly to the many conversations we had. We typically 
met several times a year. Two of these yearly meetings 
became a tradition. I would fly to San Francisco and Jerry 
would pick me up at the airport. His car was the only car 
one could buy which was all ‘no power’: stick shift, no 
automatic windows, no power breaks nor steering, a 

regular lock and obviously no navigation. Generally, he 
left his cell phone at home. We would drive around till we 
found a decent looking fast food place. We would sit for 
about 5 h on coffee and food. Jerry had an incredible 
knowledge of the literature while I updated him on leader-
ship changes within medical societies and academia. At 
the end of the meeting, we would create the framework for 
the next congress.  
The second meeting was the evening before the World 
Congress. We met over a couple of gin martinis updating 
each other in a more relaxing social atmosphere getting 
ready for the conference. Jerry was most happy when Eve 
joined him. Eve was a scientist with specialty in electronic 
microscopy, who turned an artist. She created beautiful ties 
and scarfs from photos she took with the electronic micro-
scope. Jerry often negotiated for her to get a booth in large 
meetings, where he was lecturing, allowing her to sell her 
art. At times, he would replace her and himself sell the ties 
and scarfs. My wife Nava is a painter artist herself, and we 
added another dimension to the congress, an art and sci-
ence exhibition displaying both Nava and Eve’s work.

Jerry Reaven is one of America’s Scientific Giants, I 
was fortunate to be associated with him for 20 years, learn 
from him, adopt him as my mentor and had the privilege to 
call him my friend or in Jerry’s language ‘buddy’.
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When reliable plasma insulin assays and accurate triglyc-
eride methods became available in the 1960s, the scene 
was set for Gerald Reaven and colleagues to discover the 
association between the insulin response to carbohydrate 
feeding and serum triglyceride levels.1 Higher insulin 
responses were associated with higher triglyceride levels. 
Initially, Reaven hypothesised that the increased insulin 
levels were the cause of the hypertriglyceridaemia, because 
insulin was believed at that time to stimulate hepatic very 
low density lipoprotein (VLDL) secretion.1 However, in 
the 1980s, it became possible to culture adult hepatocytes 
without the necessity for insulin to maintain their viability 
and it was then evident that the primary effect of insulin on 
hepatic VLDL secretion was inhibitory.2 This proved to be 
due to an increase in the proteolytic degradation of newly 
synthesised apolipoprotein B100 [the major protein moi-
ety of VLDL and low-density lipoprotein (LDL)] before it 
could be assembled into VLDL.3 Thus, hypertriglyceridae-
mia must be due not to hyperinsulinaemia, but to resist-
ance to insulin. Reaven then argued that, like muscle, the 
liver must be resistant to the action of insulin, at least in 
regard to its diminished capacity to take up glucose. 
Increased insulin levels were thus a response to overcome 
this resistance in order to maintain euglycaemia [or the 
failed attempt to maintain normal glucose levels in the 
case of type 2 diabetes mellitus (T2DM)]. Hepatic insulin 
resistance releases the brake imposed by insulin on VLDL 
production and thus explains the hypertriglyceridaemia of 
metabolic syndrome and T2DM. This theory was later 
confirmed by human studies of VLDL kinetics.3 
Subsequently, a clinical syndrome emerged associated 
with an exaggerated insulin response to carbohydrate feed-
ing. In addition to hypertriglyceridaemia, this syndrome 
comprised increased risk of atherosclerotic cardiovascular 
disease (CVD), T2DM or a predisposition to develop it, 
low high-density lipoprotein (HDL) cholesterol, non-alco-
holic steatohepatitis, hypertension, hyperuricaemia, raised 
indices of inflammation and of coagulation (plasminogen 
activator inhibitor-1, fibrinogen), hirsutes and male pattern 
obesity in women [polycystic ovary syndrome, low sex 
hormone binding globulin (SHBG)] and in extreme cases 
acanthosis nigricans.3,4 This, Reaven termed ‘Syndrome 
X’,2 although it is now more widely known as the meta-
bolic syndrome, particularly when associated with central 

obesity. That insulin resistance and the hyperinsulinaemia 
arising as a consequence are the causes of this syndrome is 
the current iteration of the Reaven hypothesis. Visceral 
adipose tissue is believed to release inflammatory 
cytokines, which, arriving at the liver in high concentra-
tion via the portal vein, oppose the anabolic actions of 
insulin.

Diabetologists will be familiar with the large doses of 
insulin required to make even modest improvements in 
hyperglycaemia in obese patients with T2DM, often far 
greater than are required in type 1 diabetes. However, while 
Reaven was developing his hypothesis, rarer syndromes 
involving insulin resistance came to light in which a hun-
dred or more units of exogenous insulin may be required 
each day. Among these are insulin receptor mutations, 
which lead to hyperglycaemia, but not hypertriglyceridae-
mia, and abnormalities of body fat distribution, such as 
Dunnigan–Kobberling syndrome (due most commonly to 
mutation of LMNA which codes for lamins of the inner 
nuclear membrane) in which the insulin resistance is associ-
ated with both hyperglycaemia and hypertriglyceridaemia.5 
It thus became obvious that resistance to insulin-stimulated 
glucose uptake (and consequent increased insulin secretion) 
could arise at the pre-receptor level [e.g. by non-esterified 
fatty acid inhibition of glucose uptake (Randle effect)], at 
the level of the insulin receptor (due say to a gene variant) or 
occur as post-receptor phenomena within the cell where 
insulin signals to many processes by a variety of mecha-
nisms. Indeed, when the insulin receptor is intact, some of 
these processes may be underactive due to insulin resistance 
to their particular signalling mechanism while others may 
be overstimulated because their regulatory pathway can still 
respond to the raised insulin levels. Furthermore, these 
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effects might vary in different tissues. Ideas such as these 
might provide some resolution of the conflict which exists 
between which components of the Reaven syndrome are 
due to resistance to insulin (too little insulin action) and 
which are due to the consequent hyperinsulinaemia (too 
much insulin action). For example, SHBG is decreased in 
insulin resistance, leading to increased free androgen levels 
in both men and women. This at least partly explains the 
androgenisation of insulin-resistant women and thus their 
male pattern (visceral; central) obesity and hirsutes. Despite 
the association of insulin resistance with decreased SHBG, 
however, tissue culture experiments with human hepato-
cytes reveal insulin to have an inhibitory action on SHBG 
production. Thus, unlike the VLDL production pathway 
where insulin resistance decreases the inhibitory effect of 
insulin, the pathway for the production of SHBG must 
escape resistance to the action of insulin and be inhibited by 
the hyperinsulinaemia which occurs to overcome resistance 
to glucose uptake. Also acanthosis nigricans (a cutaneous 
disorder manifested by symmetric, hypertrophic, papil-
lomatous, velvety, hyperpigmented plaques commonly 
found in the axillae and on flexural and intertriginous areas) 
appears secondary to excessive insulin concentrations.

Reaven’s hypothesis has generated a substantial body 
of research and has stood the test of time better than many 
scientific concepts and continues to provide insights into 
atherogenic mechanisms and to stimulate many new lines 
of enquiry. An outstanding, fundamental issue relating to 
metabolic syndrome is which came first – the insulin 
resistance or the predisposition to deposit fat centrally 
rather than peripherally which then leads to insulin resist-
ance? If androgenisation is secondary to insulin resistance, 
then it cannot explain a predisposition to deposit fat pref-
erentially in the abdomen before insulin resistance has 
occurred. Recently, genetic antecedents of visceral as 
opposed to peripheral obesity have been revealed, which 
are likely to provide a more satisfactory explanation in 
individuals susceptible to metabolic syndrome.6

Traditionally treatment has been directed at individual 
components of the metabolic syndrome, such as hyper-
glycaemia, dyslipidaemia or hypertension. The syndrome 

is not only frequently occurring in people with T2DM 
and CVD but is present before either are clinically evi-
dent. It thus presents an opportunity for disease preven-
tion, certainly of central obesity, its most common cause. 
Treating this with diet, medication or surgery is thus the 
most obvious therapeutic approach. New targets for phar-
macological intervention are likely, however, to be iden-
tified from patients with a substantial genetic component 
to their insulin resistance. These may lead to the develop-
ment of novel therapies which could prove more gener-
ally applicable to the syndrome first fully recognised by 
Gerald Reaven.
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Professor Gerald ‘Jerry’ Reaven, in his 1988 American 
Diabetes Association Banting Lecture titled ‘Role of insu-
lin resistance in human disease’, showed strong associa-
tions between insulin resistance, hyperinsulinaemia, 
glucose intolerance, hypertriglyceridaemia, reduced high-
density lipoprotein cholesterol and hypertension.1 He 
termed the clustering of these factors ‘syndrome X’ and 
demonstrated links between this syndrome and increased 
risk of atherosclerotic cardiovascular disease (ASCVD).1 
Syndrome X, renamed ‘metabolic syndrome’ (MetS), has 
been expanded to include additional factors such as central 
or visceral adiposity, increased apolipoprotein B and small 
dense low-density lipoprotein (LDL) particles (proathero-
genic), elevated plasma fibrinogen and plasminogen activa-
tor inhibitor (PAI)-1 (prothrombotic), increased C-reactive 
protein and inflammatory cytokines (systemic inflamma-
tion) and microalbuminuria.2,3 It is generally accepted that 
the clustered components of the MetS, including insulin 
resistance, contribute to the pathogenesis of conditions 

such as non-alcoholic fatty liver disease (NAFLD), poly-
cystic ovary syndrome (PCOS), type 2 diabetes (T2D) and 

Insulin resistance and insulin  
hypersecretion in the metabolic  
syndrome and type 2 diabetes:  
Time for a conceptual framework shift

Christopher J Nolan1,2 and Marc Prentki3,4

Abstract
While few dispute the existence of the metabolic syndrome as a clustering of factors indicative of poor metabolic 
health, its utility above that of its individual components in the clinical care of individual patients is questioned. This is 
likely a consequence of the failure of clinicians and scientists to agree on a unifying mechanism to explain the metabolic 
syndrome. Insulin resistance has most commonly been proposed for this role and is generally considered to be a root 
causative factor for not only metabolic syndrome but also for its associated conditions of non-alcoholic fatty liver disease 
(NAFLD), polycystic ovary syndrome (PCOS), obesity-related type 2 diabetes (T2D) and atherosclerotic cardiovascular 
disease (ASCVD). An alternative view, for which evidence is mounting, is that hyper-responsiveness of islet β-cells 
to a hostile environment, such as westernised lifestyle, is primary and that the resulting hyperinsulinaemia drives the 
other components of the metabolic syndrome. Importantly, within this new conceptual framework, insulin resistance, 
while always a biomarker and state of poor metabolic health, is not considered to be harmful, but a protective adaptive 
response of critical tissues including the myocardium against insulin-induced metabolic stress. This major shift in how 
metabolic syndrome can be considered puts insulin hypersecretion into position as the unifying mechanism. If shown 
to be correct, this new conceptual framework has major implications for the future prevention and management of the 
metabolic syndrome, including its associated conditions of NAFLD, PCOS, obesity-related T2D and ASCVD.
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ASCVD.2–5 MetS has also been associated with increased 
risk for chronic kidney disease, cognitive impairment, 
obstructive sleep apnoea and chronic respiratory dis-
eases.6–9 While the usefulness of a diagnosis of MetS over 
its individual components in predicting T2D and ASCVD 
has been questioned, MetS is now listed as a disease entity 
(E88.81) in the International Classification of Diseases – 
10th Revision (ICD-10), avowing to the importance of 
Reaven’s contribution in bringing this clustering of factors 
involved in cardiometabolic diseases to the attention of cli-
nicians and scientists.1,10

Insulin resistance: root cause of MetS 
and T2D or a protective adaptive 
response?

Ongoing controversy surrounding the MetS, in terms of its 
predictive value for particular diseases, is a consequence of 
the failure of metabolic scientists and clinicians to establish 
it as a precise condition or to provide a unifying mechanism 
to explain its clustering of factors, with insulin resistance 
and visceral adiposity being most commonly proposed.2,10 
Reaven argued for insulin resistance as the unifying mecha-
nism or primary causal factor and, supporting this view, the 
European Group for the Study of Insulin Resistance pro-
posed ‘insulin resistance syndrome’ as an alternate name 
for MetS.1,11 Furthermore, the mainstream understanding of 
pathogenesis of T2D is that it develops as a consequence of 
failure of pancreatic islet β-cells to sustain the hyperinsuli-
naemia required to compensate for insulin resistance, giv-
ing insulin resistance a high-level causative role.12,13 Thus, 
within the current conceptual framework, insulin resistance 
is considered to be ‘harmful’ and the root cause of T2D and 
all the other conditions linked to the MetS; furthermore, it 
should be overcome at any cost.

An alternate view gaining momentum is that insulin 
resistance has a role in protecting critical tissues of the 
body from metabolic injury in situations of chronic nutri-
ent excess.14–17 Its presence within the MetS, while indica-
tive and a biomarker of poor metabolic health, does not 
mean insulin resistance has a causative role. Furthermore, 
if insulin resistance does have an adaptive protective role, 
attempts to override it in patient treatment have the poten-
tial to cause harm. Thus, we believe a shift is needed in the 
conceptual framework by which we understand insulin 
resistance and the aetiology of T2D and that this has impli-
cations on safe management of patients with MetS, T2D 
and related conditions.

Insulin sensitivity: adaptable to 
physiological demands

Physiological adaptability in insulin sensitivity is an 
important mechanism by which the body can regulate 

nutrient partitioning between tissues, necessitated by wide 
fluctuations in dietary intake and physical activity, and life 
events such as rapid pubertal growth, pregnancy, illness 
and ageing. For example, in response to short-term over-
feeding, a rapid fall in insulin sensitivity occurs which 
allows diversion of nutrients from skeletal muscle to adi-
pose tissue for storage, potentially important moving 
between situations of feast and famine.18,19 Pregnancy 
necessitates diversion of nutrients to the developing foetus 
and insulin resistance in the mother is a mechanism by 
which this is achieved.20 Key to this discussion is the role 
of adaption in insulin sensitivity to a chronic nutrient over-
supply, as occurs in westernised lifestyles. As discussed 
below, the development of insulin resistance in such situa-
tions could provide important protection to critical tissues 
such as the heart from nutrient overload and toxicity.14–17

Insulin resistance: a protective 
mechanism against nutrient-induced 
intracellular metabolic stress

We previously proposed that in response to chronic 
over-nutrition, tissues normally responsive to insulin 
for glucose uptake, such as the heart and skeletal mus-
cle, protect themselves from nutrient-induced toxicity 
by becoming insulin resistant.14,15 Without this mecha-
nism at times of nutrient surplus, or by overriding this 
protective insulin resistance with high-dose insulin 
therapy, these tissues will be damaged by nutrient over-
load, a process we have termed ‘insulin-induced meta-
bolic stress’ (Figure 1).14,15

A failure to limit excess entry of glucose at times of con-
comitant high free fatty acid (FFA) availability will cause 
cell injury by the mechanisms of glucolipotoxicity.12 High 
FFA availability will inhibit glucose oxidation at the level 
of pyruvate dehydrogenase, such that a high glucose flux 
will be forced into pathways above this step, including gly-
cogen synthesis, the polyol and hexosamine pathways, and 
the production of advanced glycation end product (AGE) 
precursors (Figure 1).21,22 Similarly, high glucose availabil-
ity, via malonyl-CoA/AMPK metabolic sensing mecha-
nisms, will inhibit FFA oxidation such that intracellular 
FFA metabolism will be pushed towards esterification and 
other processes causing intracellular steatosis and accumu-
lation of complex lipids such as diacylglycerols, choles-
terol esters and ceramides (Figure 1).23,24 An excessive 
mixed nutrient entry into cells will also overload the 
electron transfer chain resulting in mitochondrial dys-
function and increased reactive oxygen species (ROS) 
production.25,26 Endoplasmic reticulum stress and activa-
tion of the inflammasome are also known consequences 
of excessive nutrient entry.23,27–29 The concept of ‘insulin-
induced metabolic stress’ has been discussed in more 
detail previously.15
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Figure 1. Model illustrating the molecular basis of insulin-induced metabolic stress in obese insulin-resistant and poorly controlled 
type 2 diabetes patients. Depicted is a cell in which (a) insulin resistance (IR) protects from nutrient overload and metabolic stress by 
limiting glucose flux into the cell at times when both glucose and free fatty acids (FFA) are elevated in blood; (b) the IR protection is 
overridden by a high dose of exogenous insulin therapy which promotes excess glucose uptake and both glucotoxicity and lipotoxicity. 
High FFA availability inhibits glucose oxidation at the level of pyruvate dehydrogenase (PDH), such that a high glucose flux promoted 
by high levels of insulin will be forced into glucotoxic pathways above this step, including the polyol and hexosamine pathways, as well 
as the production of advanced glycation end product (AGE) precursors. Furthermore, high glucose availability promotes build-up 
of cytosolic malonyl-CoA which will inhibit carnitine palmitoyltransferase 1 (CPT1) and the transfer of long-chain acyl-CoAs (LC-
AcylCoA) into mitochondria for β-oxidation. This will result in a push of intracellular FFA metabolism towards synthesis of complex 
lipids, such as diacylglycerols, cholesterol esters and ceramides, and steatosis causing lipotoxicity. Excess glucose supply to the 
mitochondria in the presence of high FFA supply will also promote reactive oxygen species (ROS) production and oxidative damage.
CD36: free fatty acid transporter; GLUT4: facilitative glucose transporter 4; Ins-R: insulin receptor.
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Islet β-cell role in obesity and T2D: 
upstream or downstream of insulin 
resistance?

The predominant view is that islet β-cell failure in obesity-
related T2D is a consequence of it not being able to sustain 
high enough insulin secretion to compensate for insulin 
resistance, suggesting it is downstream and a victim of 
insulin resistance.12 However, increasing evidence from 
pre-clinical and clinical studies support an alternate possi-
bility, at least in subsets of individuals at risk of T2D, that 
hyper-responsiveness of the islet β-cell to a hostile envi-
ronment (e.g. from a westernised lifestyle) drives hyperin-
sulinaemia, this being the culprit and upstream to excessive 
weight gain, insulin resistance, subsequent β-cell failure 
and the development of T2D.30–33

There is considerable heterogeneity in islet β-cell func-
tion in mouse strains with those that have a tendency for 
insulin hypersecretion (e.g. DBA/2 compared to the 
C57Bl/6 and 129 T2 strains) being more prone to high fat 
diet–induced weight gain and β-cell failure.33,34 Further-
more, there are several examples by which suppression of 
insulin secretion through genetic manipulation can reduce 
high fat diet–induced obesity and insulin resistance. Islet 
β-cell-specific deletion of the adipose triglyceride lipase, 
through reducing the lipid amplification arm of fuel-
induced insulin secretion, protects mice from obesity, 
hyperinsulinaemia, insulin resistance and hyperglycae-
mia.35 In addition, through suppressing insulin secretion 
by knocking out three of the four insulin gene alleles 
(Ins1−/−; Ins2+/− and Ins1−/−; Ins2+/+), it has been shown 
that ageing female mice have lower glycaemia, improved 
insulin sensitivity and an extended life span.36 The model 
less predictably altered insulin secretion in male mice.30 In 
the leptin deficient ob/ob mouse model of obesity, a simi-
lar genetic approach to lowering insulin secretion, while 
successfully being able to attenuate obesity, resulted in the 
development of diabetes, indicative of a need for compen-
satory hyperinsulinaemia for obesity-related insulin resist-
ance when a rare monogenic cause of obesity rather than 
hyperinsulinaemia is the primary cause of the excessive 
weight gain.37

Of relevance within human studies is the Da Qing 
Children Cohort Study which showed that fasting insulin 
at the age of 5 years, after the adjustment for age, sex, birth 
weight, TV-viewing time and weight (or body mass index) 
at baseline, predicted weight gain from age 5 to 10 years.38 
Furthermore, higher insulin levels at 5 years of age were 
also predictive of higher levels of systolic blood pressure, 
fasting plasma glucose, insulin resistance as determined by 
the homeostasis model and triglycerides at 10 years of age, 
all features of the MetS.38 The findings were similar to 
those in a study of Pima Indian children.39 In addition, 
adolescent girls with PCOS have been shown to have 

early-onset insulin hypersecretion in association with insu-
lin resistance.40

Pharmacological approaches to suppress insulin secre-
tion in humans also support the view that hyperinsulinae-
mia may have more of a primary role in the MetS. In obese 
men, 6 months treatment of lifestyle change with either 
diazoxide (DZ) alone (inhibits insulin secretion by activat-
ing the ATP sensitive potassium channels), DZ with met-
formin (DZ + M) or placebo showed that DZ (DZ and 
DZ + M groups combined) markedly reduced fasting insu-
lin levels by 72% compared to only 23% in the placebo 
group (p < 0.001), and this was accompanied by greater 
improvements in body weight, LDL cholesterol, HDL cho-
lesterol, triglyceride, and systolic and diastolic blood 
pressure.41 Similar findings were found when hyperinsuli-
naemia was suppressed by the somatostatin analogue octre-
otide LAR in obese subjects, with evidence of responders 
and non-responders to this therapy.42 Also of relevance, in 
subjects with T2D, short-term DZ use is capable of restor-
ing islet β-cell function through β-cell rest.43,44

Thus, considerable evidence points to insulin hyperse-
cretion as being at, or close to, the root cause of MetS and 
its related conditions, with insulin resistance being down-
steam. Focus on reducing insulin hypersecretion, at least 
early in the course of these conditions, is likely to have 
beneficial metabolic effects.

Towards better stratification of 
diabetes: subset of severe insulin-
resistant and hyperinsulinaemic 
diabetes

Within a recently reported study of adult-onset diabetes 
from Scandinavia, five subgroups were identified: severe 
autoimmune diabetes (SAID), severe insulin-deficient dia-
betes (SIDD), severe insulin-resistant diabetes (SIRD), 
mild obesity-related diabetes (MOD) and mild age-related 
diabetes (MARD).45

The subgroup that seems most relevant to this discus-
sion is SIRD, with the predominant characteristics being 
obesity, severe hyperinsulinaemia and insulin resistance. 
An alternative name for this subgroup could have been 
‘severe hyperinsulinaemic diabetes’. Individuals within 
this subgroup, in keeping with the concept of insulin-
induced metabolic stress, were also more likely to develop 
diabetic nephropathy and have coronary events.45 
Surprisingly, the age of diabetes onset in the SIRD group 
was relatively high, which may relate to the predominant 
Scandinavian ethnicity within the diabetes registries 
used.45 The SIRD subgroup characteristics of more severe 
hyperinsulinaemia and insulin resistance tend to be mir-
rored in young people presenting with obesity-related 
T2D, as was found in the Restoring Insulin Secretion 
(RISE) study and is also reported in various high-risk 
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indigenous groups.40,46,47 T2D in youth is also associated 
with a much higher risk of early-onset nephropathy and 
macrovascular disease.40 If in this subset of diabetes 
(SIRD), insulin hypersecretion rather than insulin resist-
ance has the primary role, as remains to be determined, it 
will have major implications on the best approaches to pre-
vention and treatment.

In the SIDD, MOD, and MARD subgroups, insulin 
resistance is of lesser degree at the time of diabetes diag-
nosis; however, islet β-cell failure must be involved in the 
pathogenesis. Whether mild suppression of insulin secre-
tion in at least some of those at risk within these subgroups 
would prevent this β-cell failure and T2D development is 
unknown. A precision medicine approach will most likely 
be required in which the correct approach to diabetes pre-
vention and treatment will require detailed phenotypic and 
genotypic classification of individual patients within these 
subgroups.

A paradigm shift: new conceptual 
framework for considering insulin 
resistance and the MetS

If insulin resistance, while clearly being a biomarker of 
poor metabolic health, is also to be considered a defen-
sive mechanism used by critical tissues against hyperin-
sulinaemia and nutrient overload, a complete revision of 
the conceptual framework within which hyperinsulinae-
mia, insulin resistance and the MetS are viewed, is 
needed (Figure 2). Such a revision is not trivial, as it has 
major implications for how MetS and its associated con-
ditions, including T2D, PCOS, NAFLD and ASCVD, 
should be prevented and managed. Within this new 
framework and paradigm shift, hyperinsulinaemia has a 
more primary or causative role. In doing so, instead of 
the role of the islet β-cell being one of ‘compensation’ 
for insulin resistance, it becomes the primary driver, 
with insulin hypersecretion and the resulting hyperinsu-
linaemia taking up position as the unifying mechanism. 
Thus, the development of new therapeutic approaches 
for MetS, and at least the SIRD subgroup of T2D, will 
need to move to prevention and/or suppression of the 
hypersecreting β-cell (Figure 2). Approaches to lower 
glucose and other elevated nutrients in the blood of MetS 
and T2D patients through overriding the protective role 
of insulin resistance will be contraindicated, as we and 
others have previously advocated.14–17 While research 
into mechanisms of islet β-cell failure and insulin resist-
ance will continue to be important, more focus on the 
mechanisms driving insulin hypersecretion will be 
required, whether they be genetic or acquired, including 
those acquired early in life from epigenetic processes 
and/or consequent on islet β-cell response to new envi-
ronmental exposures.31

Relevance to management of T2D

Optimisation of cellular nutrient status

In managing disturbed metabolic homeostasis in T2D, the 
focus of clinicians is currently on normalising glucose and 
lipid parameters in the blood. Less thought is given to opti-
mising intracellular metabolism, even though nutrient-
induced tissue injury in obesity-related T2D is predominantly 
a consequence of excess entry of nutrients from the blood 
into cells. This is understandable, as measuring nutrient lev-
els is much easier in blood (e.g. blood glucose, HbA1c and 
plasma triglycerides) than in cells. The corollary is that 
approaches to normalise glycaemia in obesity-related T2D 
that drive glucose and other nutrients into already nutrient-
overloaded cells, such as by high-dose insulin therapy or 
sulphonylureas to override insulin resistance, or insulin sen-
sitisers to reverse insulin resistance depending on mecha-
nism of action, may unintentionally cause harm.15 According 
to this argument, alternative approaches to lowering glycae-
mia that nutrient off-load cells, such as intensive lifestyle 
measures, sodium-glucose transporter 2 (SGLT2) inhibitors, 
glucagon-like peptide-1 receptor agonists or bariatric sur-
gery, should be beneficial in the majority of patients with 
obesity-associated T2D (Figure 3(a)).15

The alternate scenario of intracellular nutrient depletion 
in patients with hypoinsulinaemic diabetes is also impor-
tant to consider, particularly, with the increasing occur-
rence of cases of euglycaemic ketoacidosis in patients 
treated with SGLT2 inhibitors.48 Avoidance of SGLT2 
inhibitors and most often a shift to insulin therapy will be 
necessary in such patients (Figure 3(b)).

Thus, the approach to diabetes management should take 
into account some consideration of cellular nutrient status 
(Figure 3). For these reasons, new blood biomarkers of 
cellular nutrient or energy status may also be of value in 
patient care and once discovered should be examined for 
clinical utility.

In support of the proposition that glucose-lowering 
approaches that work by driving glucose into tissues can 
be harmful in overweight and obese subjects with T2D and 
insulin resistance, we reviewed major T2D clinical trials 
and found that whenever intensive glucose-lowering 
approaches were associated with weight gain of greater 
than 1.0 kg/year [Action to Control Cadiovascular Risk in 
Diabetes (ACCORD), Veterans Affairs Diabetes Trial 
(VADT) and Diabetes Mellitus Insulin-Glucose Infusion 
in Acute Myocardial Infarction 2 (DIGAMI 2)], cardiovas-
cular and all-cause mortality increased, although only 
reaching statistical significance in ACCORD given the 
greater sample size.15 Furthermore, among adults with dia-
betes and stable ischaemic heart disease aged ⩾75 years, 
insulin provision therapy was associated with an increased 
risk for all-cause mortality [hazard ratio = 1.89, confi-
dence interval (CI) = 1.1–3.2, p = 0.020].49
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In support of the benefits of nutrient off-loading 
approaches are more recent clinical trials of new classes 
of glucose-lowering agents, such as SGLT2 inhibitors (by 
promoting urinary glucose loss) and GLP-1 receptor ago-
nists (by reducing weight through increased satiety), as 
well as bariatric surgery that have demonstrated reduc-
tions in major adverse cardiovascular and renal outcomes 
in high-risk T2D patients.50–52 The recent consensus 
statement of the American Diabetes Association (ADA) 
and European Association for the Study of Diabetes 
(EASD) on the management of hyperglycaemia in T2D 

has taken the results of these major clinical trials into 
consideration in their recommendations.53

Prevention of insulin hypersecretion

The nutrient off-loading approaches to glucose lowering 
available in the management of T2D, including intensive 
lifestyle change, SGLT2 inhibitors, GLP-1 receptor antago-
nists, α-glucosidase inhibitors and bariatric surgery, will all 
reduce insulin hypersecretion. However, often these thera-
pies are started once T2D is established and failure of islet 

Figure 2. A new conceptual framework for considering insulin resistance and the metabolic syndrome (MetS) and its associated 
disorders. The key changes in this conceptual framework are the roles of hyperinsulinaemia and insulin resistance in the MetS. 
Islet β-cell hyper-responsiveness to adverse environmental factors in genetically or epigenetically predisposed individuals results in 
hyperinsulinaemia and this is the primary driver of the MetS. Insulin resistance provides protection for critical tissues against insulin-
induced metabolic stress and, while being a biomarker of metabolic ill health, is not a driver of pathogenesis. The characteristic 
features of MetS are driven by hyperinsulinaemia. The MetS-related disease entities, type 2 diabetes (T2D), cardiovascular diseases 
(CVD), non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH) and polycystic ovary syndrome (PCOS) are a 
downstream consequence of hyperinsulinaemia and the MetS.
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Figure 3. Optimisation of cellular nutrient status in patients with hyper- or hypoinsulinaemic type 2 diabetes: importance of 
the approach to glucose lowering. (a) In untreated type 2 diabetes (T2D) with hyperinsulinaemic diabetes, insulin resistance 
(IR) protects insulin-responsive cells such as cardiomyocytes and skeletal muscle cells from nutrient overload; cells such 
as endothelial cells that are non-responsive to insulin with respect to glucose uptake, however, are not protected and are 
injured by glucotoxicity contributing to diabetes complications (left panel). Glucose-lowering approaches that override the 
physiological IR to force glucose into insulin-responsive tissues (e.g. by high-dose insulin therapy) may reduce glucotoxicty 
in some tissues, but at the cost of nutrient-induced injury to the insulin-responsive tissues (e.g. causing a metabolic 
cardiomyopathy) (centre panel). Glucose-lowering approaches that off-load glucose from cells of critical body tissues, 

 (Continued)
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β-cells has already commenced. Optimal approaches for 
reversal of severe hyperinsulinaemia in patients prior to 
development of T2D or early in its course, in particular in 
younger individuals, when lifestyle measures are generally 
unsuccessful, are not known. Of note, bariatric surgery has 
been shown to be effective in reversing hyperinsulinaemia 
and MetS in obese adolescents.54 In the RISE study, neither 
3 months of insulin glargine followed by 9 months of met-
formin nor 12 months of metformin alone slowed the pro-
gressive deterioration of β-cell function in young people 
with early T2D, suggesting different approaches are 
required.55 The development of specific islet β-cell thera-
pies to limit insulin hypersecretion in high-risk individuals 
with MetS-related conditions and obesity-related pre-dia-
betes and early T2D should be pursued.

Conclusion

The part played by Jerry Reaven in linking the dots 
between the various components of the MetS and the rel-
evance of MetS to ASCVD, NAFLD, PCOS and T2D has 
been enormously important. The search for the unifying 
mechanism has been contentious. Here, we make a case 
for putting ‘insulin hypersecretion’ into this role, while 
considering insulin resistance as a protective downstream 
response. This necessitates a complete revision of the 
conceptual framework within which we view insulin 
resistance and the pathophysiology of the MetS and obe-
sity-associated T2D, which if confirmed, has major impli-
cations for the prevention and management of these 
metabolic conditions.
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Introduction

This short review is written in recognition of the seminal 
works of Gerald Reaven on the role of insulin resistance in 
the pathogenesis of type 2 diabetes and cardiovascular 
(CV) disease. Foregoing reviews in this issue of Diabetes 
and Vascular Disease Research have eminently recounted 
these works.1–4 Here, we consider how a growing appreci-
ation of insulin resistance influenced the development of 
new therapeutics in the field of diabetes.

Multifactorial pathophysiology

Reaven’s Syndrome X (not to be confused with the cardiac 
syndrome X) describes the clustering of CV risk factors 
that depend on or associate with insulin resistance.5 
Although Reaven’s6,7 Syndrome X later became subsumed 
within the so-called Metabolic Syndrome, the two syn-
dromes are not synonymous: insulin resistance can pro-
mote CV disease independent of other CV risk factors 
commonly included in the Metabolic Syndrome such as 
excess adiposity, and insulin resistance is often associated 
with compensatory hyperinsulinaemia, at least in its early 
pathogenesis, which further aggravates metabolic, vascular 
and haemodynamic disturbances. Studies on the aetiology 
of insulin resistance and accompanying metabolic and CV 
abnormalities gave rise to a ‘common soil’ hypothesis of 
shared origins, and clinical practice recognised that the 

presence of one feature associated with insulin resistance 
should prompt suspicion about other CV risk factors.8 This 
in turn has promoted a more holistic multifactorial approach 
to the assessment and management of type 2 diabetes to 
accommodate metabolic and cardio-renal aspects.9,10

Insulin resistance presents across a wide variety of phe-
notypes with different responses between tissues, organs 
and physiological systems. Because this is typically due to 
multiple ‘bottle-necks’ in the signalling pathways that 
mediate the biological actions of insulin, it has not been 
possible to identify a single cure-all molecular target.2 
However, several glucose-lowering agents can ameliorate 
the effects of insulin resistance with impact on diabetic 
complications, particularly in type 2 diabetes (Figure 1).

Insulin

When Harold Himsworth described insulin resistance in 
the 1930s, he energised debate about different types of dia-
betes.11 Studies by Yalow and Berson12 in the late 1950s 
noted that insulin concentrations might actually be higher 
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in the early stages of ‘maturity-onset diabetes’, which sub-
stantiated the Himsworth premise. Indeed, excess insulin 
has been mooted as a possible atherogenic factor,13 and 
concern about the use of high doses of insulin therapy was 
highlighted by evidence that raised insulin concentrations 
do not rectify insulin resistance and may lead to an increas-
ing spiral of insulin demand through further disruption to 
insulin receptor binding and post-receptor signalling.14 
Thus, an appreciation of Syndrome X helped to redirect 
attention towards sparing insulin rather than increasing 
insulin, particularly in the earlier stages of type 2 diabetes.

While this illustrates the rationale for changing the 
management focus of type 2 diabetes beyond insulin, the 
main alternative up to the 1990s was the use of sulfonylu-
reas which act mostly by stimulating insulin secretion.

Sulfonylureas

The first sulfonylureas (e.g. carbutamide and tolbutamide) 
from the mid 1950s and more potent versions from the mid 
1960s (e.g. glibenclamide) have well-studied glucose- 
lowering properties in type 2 diabetes, but incur weight 
gain and risk of hypoglycaemia.15 However, the effects of 
sulfonylureas on insulin resistance have not been consist-
ent, and CV effects are also unclear. The much criticised 
University Group Diabetes Programme (UGDP) cast 
doubt on the CV safety of tolbutamide in the late 1960s,16 
but the United Kingdom Prospective Diabetes Study 

(UKPDS)17,18 and many other trials have shown a better 
CV prognosis with sulfonylureas than diet/lifestyle but 
less beneficial than metformin. Similarly, the effects of 
meglitinides on insulin resistance and CV events remain 
unclear but appear minimal. Nevertheless, the detrimental 
impact of hypoglycaemia on CV events and the adverse 
effects of insulin resistance on islet beta-cell function must 
be considered in selecting glucose-lowering therapies.19,20

Biguanides

Although several guanidine derivatives were used in the 
treatment of diabetes in the 1920s and 1930s, their use 
dwindled as insulin became available, and it was not until 
the late 1950s that three biguanides (metformin, phen-
formin and buformin) were introduced in Europe and one 
(phenformin) was introduced in the United States.21 
Phenformin and buformin were withdrawn in the late 1970s 
due to high risk of lactic acidosis, and metformin was even-
tually introduced in the United States in 1995. Since 
biguanides lower blood glucose in type 2 diabetes without 
stimulating insulin secretion, it was acknowledged that 
they counter insulin resistance, and this was initially attrib-
uted to increased anaerobic metabolism and an independent 
reduction of hepatic gluconeogenesis. Lack of weight gain 
and low risk of hypoglycaemia favoured early use of met-
formin in type 2 diabetes, supported by mounting evidence 
for long-term reductions in CV disease.18,22 Through 
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increased appreciation of the pathogenic effects of insulin 
resistance, Reaven’s studies contributed an important part 
of the scientific platform for metformin and its present-day 
position as first-line pharmacological therapy for type 2 
diabetes. Reaven’s group also conducted several key stud-
ies on the mode of action of metformin, for example, show-
ing the inter-relationship of effects on glucose and lipid 
homeostasis.23 The group also noted that metformin pro-
longs insulin receptor tyrosine kinase activity.24

Thiazolidinediones

Thiazolidinediones (TZDs) emerged from lipid-lowering 
clofibrate analogues in the mid 1970s, before peroxisome 
proliferator–activated receptor (PPAR) molecules had 
been discovered, but it was not until the late 1990s that the 
first PPARγ agonist (troglitazone) was introduced and 
then withdrawn due to unexplained hepatotoxicity. 
Rosiglitazone and pioglitazone followed promptly: they 
lowered plasma glucose without raising insulin, mostly 
through genomic effects that include differentiation of new 
small insulin-sensitive subcutaneous adipocytes, and 
improved insulin action in liver and muscle.25 Pioglitazone 
also has some PPARα agonism which assists lipid control, 
but weight gain associated with adipose deposition and 
renal effects to increase fluid retention and risk of heart 
failure limited their use. Rosiglitazone was withdrawn in 
Europe in 2010 amid controversy over possible adverse 
CV effects, and potential risk of bone fractures has further 
limited use. Although TZDs provided an antidote to insu-
lin resistance, their limitations illustrate the complexities 
and ambiguities of increasing insulin action across a 
breadth of biological functions without modulating effects 
in different tissues.26

Incretins

Emanating from studies of the entero-insular axis, the 
availability of glucagon-like peptide-1 receptor agonists 
(GLP-1RAs) from 2005 and dipeptidyl peptidase-4 (DPP4) 
inhibitors from 2006 shifted the therapeutic focus of type 2 
diabetes back to the pancreas. These agents do not carry 
the risk of hypoglycaemia seen with sulfonylureas because 
they potentiate insulin secretion and suppress glucagon 
secretion in a glucose-dependent manner (sulfonylureas 
stimulate insulin secretion independently of the glucose 
concentration).27,28 Interestingly, GLP-1 RAs and DPP4 
inhibitors reduce insulin resistance: this appears to be due, 
at least in part, to a lowering of glucose concentrations, 
interrupting the vicious spiral of type 2 diabetes in which 
insulin resistance generates hyperglycaemia and the ensu-
ing glucotoxicity aggravates insulin resistance.20 The sati-
ety effect of GLP-1RAs, which is associated with weight 
loss and decreased adiposity, provides further metabolic 
and endocrine mechanisms to reduce insulin resistance, 

and potential additional incretin-based therapies including 
peptide YY (PYY), oxyntomodulin, derivatives of gastric 
inhibitory polypeptide (GIP) and antagonists of ghrelin are 
under investigation.29

Sodium/glucose co-transporter-2 
inhibitors

Sodium/glucose co-transporter-2 (SGLT2) inhibitors intro-
duced in 2012 reduce glucotoxicity and adiposity by elimi-
nating excess glucose in the urine and thereby act indirectly 
to reduce insulin resistance and spare some of the demand 
on beta-cell function.30,31 Further evidence that lowering 
blood glucose will in turn lower insulin resistance is pro-
vided by alpha-glucosidase inhibitors which reduce pran-
dial glucose excursions by slowing the rate of carbohydrate 
digestion.

Adipose and anti-obesity agents to 
reduce weight

Excess lipids, endocrine factors and pro-inflammatory 
molecules from adipose tissue are well known to promote 
the pathogenesis of insulin resistance in obese type 2 dia-
betes, and several adipokine-based therapies such as adi-
ponectin receptor agonists are receiving consideration  
as potential approaches to counter insulin resistance. 
Improvements of insulin action and glycaemic control are 
consistently reported with caloric restriction and reduced 
adipose mass (particularly in omental, hepatic and pancre-
atic locations), whether achieved by dieting, bariatric proce-
dures, SGLT2 inhibitors, GLP-1RAs or other appetite/
satiety-modifying therapies.32,33 We may wonder why the 
age-old energy-reducing approach to treating obese-diabetes 
has taken so long to regain prominence.

CV and other considerations

It is perhaps an irony that one of the TZDs (rosiglitazone), 
which improved insulin sensitivity and reduced a range of 
atherogenic risk markers, should have triggered CV safety 
concerns and prompted current regulatory requirements 
for specific and extensive evaluation of CV events with 
new glucose-lowering agents.26 Although there are many 
unanswered questions regarding the subtle interplay of 
insulin resistance and hyperinsulinaemia on the endothe-
lium and myocardium, it is evident that early intervention 
to achieve long-term metabolic control and reduce insu-
lin resistance provides an opportunity to improve CV 
prognosis.18,26 Timing appears to be especially important 
in this context because late interventions have been less 
successful against CV disease. The early development of 
hyperinsulinaemia with insulin resistance may promote 
hyperfiltration and damage to glomeruli, and insulin resist-
ance is implicated in a wide variety of conditions including 
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polycystic ovary syndrome and dementia indicating the 
breadth of potential benefits to be gained from effective 
timely interventions.1–4,34,35

Future

Awareness of insulin resistance as an underlying and mod-
ifiable pathogenic factor spanning diabetes, CV and other 
disease areas makes it an important therapeutic target. 
However, despite considerable appreciation of insulin–
receptor interactions and post-receptor signalling, thera-
peutic interventions have been unable to rectify or 
circumvent the complex multi-dimensional defects of 
insulin resistance.35 Several current therapies do act, at 
least in part, to address the metabolic disturbances and 
provide some protection against adverse CV events associ-
ated with type 2 diabetes, but it is unclear how these inter-
ventions will impact other disease areas susceptible to 
insulin resistance. New therapeutic approaches, including 
small non-peptide molecules that partially mimic insulin 
effects at the insulin receptor or initiate or potentiate recep-
tor tyrosine kinase activity or target post-receptor path-
ways, have been identified, but these are still at early 
stages of investigation.36 Thus, the therapeutic reversal of 
insulin resistance seems destined to be an ongoing unmet 
need for the foreseeable future.
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Background

Type 2 diabetes mellitus (T2DM) is a cardiometabolic dis-
ease1,2 that affects both the microvasculature (retinopathy, 
nephropathy, neuropathy) and macrovasculature [myocar-
dial infarction (MI), stroke]. The microvascular complica-
tions primarily are related to the level of glycaemic 
control,3,4 whereas hyperglycaemia is a relatively weak 
risk factor for the macrovascular complications3,5 which 
represent the major cause of mortality in T2DM patients.6,7 
Long-term cardiovascular (CV) outcome trials have gener-
ally demonstrated no or only slight reduction in CV events 
with intensive glycaemic control.3,8–10 In contrast, treat-
ment of more traditional CV risk factors (blood pressure, 
dyslipidaemia) consistently has been associated with 
major CV benefits in T2DM patients.1

The results of recent CV outcome trials have docu-
mented that glucose-lowering agents in two different 
classes significantly reduce the MACE (major adverse car-
diovascular events) endpoint (composite of CV mortality, 
non-fatal MI, non-fatal stroke). In both the EMPA REG 
OUTCOME trial11 and in the CANVAS program,12 the 
sodium glucose transporter-2 (SGLT2) inhibitors, empa-
gliflozin and canagliflozin, reduced MACE by 14% and 
13%, respectively, although the relative contributions of 
the three individual components of the composite outcome 
differed. In LEADER13 and SUSTAIN-6,14 therapy with 

the glucagon-like-peptide receptor agonists (GLP-1 RAs), 
liraglutide and semaglutide, resulted in reductions in 
MACE of 13% and 26%, respectively, and also with dif-
ferential contributions from the composite elements. 
Importantly, empagliflozin and liraglutide were each asso-
ciated with significant reductions in CV mortality as well. 
With the robust results of these large, long-term, CV out-
come trials, we are entering a new era of T2DM treatment 
where glucose-lowering drugs that address both glycae-
mia, as well as CV risk, are now preferred in patients with 
cardiovascular disease (CVD) over those therapies that 
simply lower HbA1c.15

In the midst of the newfound interest in the SGLT2 
inhibitors and GLP-1 RAs, the established anti-athero-
genic benefits of the thiazolidinedione (TZD), pioglita-
zone, have been overlooked.16 The recent results of the 
IRIS (Insulin Resistance Intervention after Stroke) trial17 
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should rekindle interest in pioglitazone as a cardioprotec-
tive drug, an effect which actually was established more 
than a decade ago. Because pioglitazone is now generi-
cally available, it represents a more affordable option than 
either an SGLT2 inhibitor or a GLP-1 RA.18 Furthermore, 
it can be combined with these and other glucose-lowering 
agents, including the SGLT2 inhibitors or GLP-1 RAs, to 
minimize side effects.15,18–20 Pioglitazone also has a num-
ber of other demonstrated benefits, including amelioration 
of insulin resistance, preservation of beta-cell function, 
durable glycaemic control, improvement of multiple fac-
tors of the metabolic syndrome and reversal of hepatic 
steatosis [nonalcoholic fatty liver disease (NAFLD)]/non-
alcoholic steatohepatitis (NASH) making it an attractive 
option for the treatment of many patients with T2DM, par-
ticularly those at risk for CV events. In this review, we 
examine the CV, glycaemic and other metabolic benefits 
of pioglitazone and provide strategies to maximize the 
drug’s benefit: risk ratio.

CV benefit

A substantial body of evidence, including large rand-
omized prospective CV outcome trials,16,17,21–23 real-world 
observational studies24–26 and smaller studies of regression 
of coronary atherosclerosis27 and carotid intima thick-
ness,28 has demonstrated that pioglitazone reduces both 
atheroma progression and related CV events. These inves-
tigations were initiated because of a substantial literature 
dating back many decades that has linked insulin resist-
ance to premature coronary heart disease (CHD).29 These 
data begged the question as to whether reducing insulin 
resistance with an insulin-sensitizing drug would provide a 
CV benefit. The question is also of historical importance, 
since the notion that a diabetes drug could reduce CV 
events had eluded investigators for years. In PROactive, 
5238 T2DM patients with a prior CV event were rand-
omized to pioglitazone or placebo and followed for a mean 
of 2.9 years.16 Although the primary endpoint, a broad 
composite that included leg revascularization procedures, 
fell short of statistical significance [hazard ratio 
(HR) = 0.90, p = 0.09], the ‘main secondary endpoint’, 
MACE, was significantly reduced (HR = 0.84, p = 0.027) 
(Figure 1), on par with the effect size in the aforemen-
tioned recent positive trials of newer glucose-lowering 
agents.11–15 In PROactive participants with a prior MI 
(n = 2445) or prior stroke (n = 948) pioglitazone therapy 
were associated with robust 28% and 47% reductions in 
recurrent MI30 and recurrent stroke,31 respectively. The 
primary endpoint in PROactive16 should be interpreted in 
the context that leg revascularization historically has not 
been included as an endpoint in CV outcome trials since it 
is refractory to antihypertensive, lipid-lowering and glu-
cose-lowering therapy.32,33 Consistent with PROactive, a 
meta-analysis of published pioglitazone studies and 

reported to the Food and Drug Administration (FDA) dem-
onstrated a 25% reduction in CV events.21,22

Based upon (1) evidence that insulin resistance was a 
strong risk factor for stroke as well CHD,2 (2) the consist-
ently positive results observed in these CV outcome  
trials,16,17,21,22,24–28 and (3) the reduction in recurrent stroke 
(by 47%) and MI (by 28%) in T2DM individuals in 
PROactive,16 the National Institutes of Health initiated the 
IRIS study.17 In 3876 non-diabetic, insulin-resistant indi-
viduals with a recent transient ischaemic attack (TIA) or 
stroke, pioglitazone reduced fatal/non-fatal stroke or MI 
by 24% (p = 0.007) over a mean of 4.8 years (Figure 2).17 
In a follow-up report from this study,34 pioglitazone 
reduced the risk of any stroke by 25% (p = 0.01) and 
decreased the risk of acute coronary syndrome by 29% 
(p = 0.02), with most of the drug’s effects on type 1 MIs 
(HR = 0.62, p = 0.03), particularly large infarcts (HR = 0.44, 
p = 0.02).35 These results compare favourably with results 
obtained with aspirin and anti-platelet drugs,36–38 as well as 
with statins,39 which are now widely used for stroke pre-
vention.36–38 Notably, the positive beneficial CV effects of 
pioglitazone in all of these studies occurred on the back-
ground of widespread use of evidence-based CV therapies 
including anti-platelet agents suggesting that pioglitazone 
can effectively address ‘residual CV risk’.

Observational ‘real-world’ data also support the CV 
benefits of pioglitazone. For example, a retrospective 
analysis of 91,511 patients in the UK Research General 
Practice Database (GPRD) who were followed for 
7.1 years demonstrated that pioglitazone decreased all-
cause mortality by 39% compared with metformin.40 In a 
separate analysis of 27,457 GPRD patients who had a sec-
ond agent added to metformin monotherapy, pioglitazone 
therapy was associated with a significantly decreased HR 
for all-cause mortality (HR = 0.71) and the combined end-
point of all-cause mortality/major adverse CV events 
(HR = 0.75).24 In a more recent observational study,25 
pioglitazone significantly reduced both CV (HR = 0.58) 
and non-CV (HR = 0.63) mortality in a large (n = 62,266) 
European cohort of diabetic patients. In a study which 
compared 56,536 patients with T2DM who were first-
time users of pioglitazone or insulin, propensity scores 
showed a 67% reduction in all-cause mortality in favour 
of pioglitazone.26 In a meta-analysis of nine randomized 
controlled trials, pioglitazone significantly reduced the 
risk of major CV events in patients with diabetes 
[HR = 0.83, 95% confidence interval (CI) = 0.72–0.97] 
and prediabetes or insulin resistance (HR = 0.77, 95% 
CI = 0.64–0.93).41 The results of this meta-analysis are 
consistent with a previous one by Lincoff et al.21 Finally, 
consistent with the IRIS study, another retrospective study 
from the UK using Clinical Practice Research Datalink 
(CPRD) found a HR of 0.63 for incident stroke in T2DM 
patients who were users of pioglitazone versus other glu-
cose-lowering drugs.42
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Smaller mechanistic studies are consistent with the 
findings from these large prospective and observational 
studies and meta-analyses. In the PERISCOPE study, 
pioglitazone, compared with glimepiride, retarded the pro-
gression of coronary atherosclerosis as measured by 

intravascular ultrasound (IVUS),27 while in the CHICAGO 
study, pioglitazone slowed the rate of increase in carotid 
intimal thickness, a surrogate measure of atherosclerosis.28 
Pioglitazone has been shown to reduce intracoronary 
plaque volume in non-diabetic43 and type 2 diabetic44 sub-
jects and to prevent restenosis after stent placement.45

One negative pioglitazone study to consider is the 
recent CV outcome trial from Italy, TOSCA-IT.46 A total of 
3041 T2DM patients with suboptimal glycaemic control 
on metformin monotherapy were randomized to either 
pioglitazone or a sulphonylurea and followed for a mean 
of 4.8 years. Because only 11% had a prior history of CVD, 
this was essentially a primary prevention population. The 
primary outcome (all-cause death, non-fatal MI, non-fatal 
stroke and urgent coronary revascularization) occurred at a 
similar frequency between the two groups: pioglitazone 
6.8% versus sulphonylurea 7.2% (HR = 0.96, p = 0.40). 
Unfortunately, the study had some methodological limita-
tions, including its unblinded design and the fact that many 
patients in the pioglitazone arm had either terminated their 
participation early (10%) or had stopped the study drug 
(28%), likely stemming from controversy about the drug’s 
safety that had arisen during the trial. Furthermore, the CV 
event rate, 1.5 per 100 person years, was very low, render-
ing the study greatly underpowered to detect any effective 
CV events. This issue was underscored by an a posteriori 
per-protocol analysis focusing on just those patients taking 

Figure 1. (a) Kaplan–Meier plot of time to MACE endpoint (cardiovascular mortality, non-fatal MI, non-fatal stroke) in T2DM 
patients treated with pioglitazone (PIO) or placebo (Plc) in PROactive. Redrawn with permission from Dormandy et al.16 (b) 
Pioglitazone reduces recurrent MI in diabetic patients with a previous MI in PROactive. Redrawn with permission from Erdmann 
et al.30 (c) Pioglitazone reduces recurrent stroke in diabetic patients with a previous stroke in PROactive. Redrawn with permission 
from Wilcox et al.31 (d) Meta-analysis of all published studies (excluding PROactive) in which the effect of pioglitazone versus 
placebo or active comparator on cardiovascular events is examined. Redrawn with permission from Lincoff et al.21

Figure 2. Effect of pioglitazone versus placebo on recurrent 
stroke and myocardial infarction in the Insulin Resistance 
Intervention after Stroke (IRIS) study. Drawn from the data in 
Kernan et al.17
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their study drug. Here, a secondary outcome that included 
peripheral vascular events was significantly reduced by 
study drug (HR = 0.67, p = 0.03). Of course, this outcome 
must be interpreted cautiously.

In summary, a large body of evidence from clinical tri-
als to observational studies to mechanistic investigations 
document that pioglitazone effectively prevents recurrent 
CV events in both diabetic and non-diabetic individuals, 
most likely through a beneficial effect on atherosclerosis. 
The only negative study to our knowledge, TOSCA-IT, 
involved patients generally without CVD and had multiple 
interpretative challenges.

Appropriate concern has been raised about ‘heart fail-
ure’ (HF) in PROactive. Due to increased renal sodium 
retention, all TZDs are associated with oedema,47 which is 
a nonspecific sign of HF by clinicians. Since the HF cases 
in PROactive were not adjudicated, it remains possible 
that at least some of the excess events may have reflected 
cases of oedema without cardiac decompensation. HF is 
typically an ominous diagnosis in patients with diabetes, 
with a 5-year mortality in excess of 50%.1,45 Given that 
mortality in this cohort of individuals with HF in 
PROactive was decreased (not increased), albeit not sig-
nificantly, it is possible even likely that not all (probably 
many) patients diagnosed with HF actually had HF. In 
fact, in smaller trials, pioglitazone has been demonstrated 
to have no deleterious effect on left ventricular (LV) func-
tion,48,49 to actually improve diastolic dysfunction,48–50 to 
reduce blood pressure,48,49 and to increase myocardial 
insulin sensitivity.48,49 Interestingly, prior to the concern 
about HF, observational data suggested that this drug class 
might actually decrease mortality after HF admissions.16 
Thus, participants in PROactive who were diagnosed with 

HF did not experience any increase in CV events com-
pared to placebo-treated individuals.16 In IRIS, HF was 
not increased, although this cohort of cerebrovascular 
patients had less CHD than did participants in 
PROactive.17,51 Also, the IRIS protocol allowed for dose 
reductions in the setting of significant weight gain or 
oedema. These observations are consistent with previous 
findings that pioglitazone improves diastolic function in 
diabetic rats52 and humans48,53 by positively influencing 
matrix remodelling.52,53 A recent meta-analysis suggests 
that pioglitazone also reduces both new onset and recur-
rent atrial fibrillation by 27%.54

Metabolic effects of pioglitazone

The insulin resistance syndrome (IRS), originally referred 
to as the metabolic syndrome, comprises a cluster of cardio-
metabolic disorders, each representing an independent CV 
risk factor.2 Pioglitazone improves each component of the 
IRS (Table 1) (reviewed in previous studies2,55–58). It 
enhances insulin sensitivity and effectively reduces plasma 
glucose levels and HbA1c while also lowering blood pres-
sure and having a favourable effect on the plasma lipid pro-
file. The latter includes a reduction in triglycerides and free 
fatty acids (FFAs), increase in high-density lipoprotein 
(HDL) cholesterol and conversion of small dense low-den-
sity lipoprotein (LDL) particles to larger, more buoyant, less 
atherogenic ones. The drug also shifts fat from visceral 
abdominal depots, from liver and from skeletal muscle to 
subcutaneous abdominal depots,59–62 thereby ameliorating 
lipotoxicity.2,55,63–66 It normalizes adipocytokine secretion, 
especially adiponectin, improves endothelial dysfunction 
and reduces circulating concentrations of the procoagulant 
plasminogen activator inhibitor-1 and the pro-inflammatory 
mediator C-reactive protein (CRP).66,67 Although pioglita-
zone improves multiple CV risk factors, both preclinical68–70 
and clinical16,17,21–23,27,28,71, data suggest that pioglitazone 
exerts direct anti-atherogenic effects on the arterial wall.

Pioglitazone transacts its effects through activation of 
the nuclear hormone receptor peroxisome proliferator–
activated receptor-gamma (PPARγ).72 PPARγ receptors 
are expressed in endothelial cells, arterial smooth muscle 
cells and monocytes/macrophages, providing a pathway 
for direct anti-inflammatory, antioxidant and other protec-
tive actions of pioglitazone.73–77 Pioglitazone is the only 
true insulin-sensitizing antidiabetic agent78 and insulin 
resistance has been independently associated with athero-
sclerotic CVD in many cross-sectional and prospective 
studies.2,29,58,79–84

Pioglitazone is a potent insulin 
sensitizer

The core pathophysiologic defects in T2DM are insulin 
resistance in muscle and liver and beta-cell failure.2,55,85 

Table 1. Effect of pioglitazone on established CV risk factors.

CV risk factors Effect of pioglitazone

Obesity (visceral) Improves – redistributes fata

Hypertension Decreases BP
Hypertriglyceridaemia Decreases TG
Low HDL cholesterol Increases HDL
Small dense LDL particles Converts to larger more buoyant LDL
Endothelial dysfunction Improves
Hyperglycaemia Durable decrease in HA1c
Inflammation (hsCRP) Reduces
Lipotoxicity Reverses
NASH/NAFLD Improves
PAI-1 Reduces
Hyperinsulinaemia Decreases
Insulin resistance Improves

CV: cardiovascular; BP: blood pressure; TG: triglyceride; HDL: high-
density lipoprotein; LDL: low-density lipoprotein; hsCRP: high-sensitive 
C-reactive protein; NASH/NAFLD: nonalcoholic steatohepatitis/nonal-
coholic fatty liver disease.
aAlthough subjects treated with pioglitazone may gain weight, visceral, 
hepatic and muscle fat content are decreased.
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Collectively, these three pathophysiologic disturbances 
have been termed the TRIUMVIRATE.2,55 Insulin resist-
ance in liver results in excess glucose production during 
the sleeping hours and is the primary factor responsible for 
fasting hyperglycaemia, while insulin resistance in muscle 
is the primary factor responsible for postprandial hyper-
glycaemia. Impaired suppression of hepatic glucose pro-
duction and reduced liver glucose uptake following a meal 
also contribute to the postprandial hyperglycaemia.55,85 
Progressive beta-cell failure55,85–88 accentuates the insulin 
resistance in liver and muscle. In addition, the adipocyte is 
resistant to insulin,2,55,85 resulting in accelerated lipolysis 
and increased circulating plasma FFA concentrations.89,90 
Elevated plasma FFA in turn exacerbate the muscle insulin 
resistance,91 stimulate hepatic gluconeogenesis and inhibit 
hepatic glucose uptake92 and impair beta-cell function.93 
Pioglitazone improves insulin sensitivity in skele-
tal2,55,72,94–96 and cardiac48,49 muscle, in liver97 and in adi-
pose tissue98 via multiple mechanisms: PPARγ activation, 
stimulation of the insulin signal transduction system, 
improved glucose transport/glycogen synthesis/glucose 
oxidation, increased mitochondrial function, reduced 
plasma FFA levels and reversal of lipotoxicity.2,55,63–66

Pioglitazone improves beta-cell 
function

Insulin resistance is the earliest detectable disturbance in 
the natural history of T2DM.2,55,85 However, overt diabetes 
does not develop in the absence of beta-cell failure and 
progressive decline in insulin secretion.2,55,85–88 Although 
not well appreciated, TZDs, including pioglitazone, in 
addition to their insulin-sensitizing action, exert a potent 
effect to preserve beta-cell function99,100 and durability of 
glycaemic control has been demonstrated in eight long-
term, double-blind, placebo-controlled or active compara-
tor studies for up to 5 years (reviewed by DeFronzo55). 
Multiple studies performed in subjects with impaired glu-
cose tolerance (IGT) also have demonstrated a potent 
action of TZDs to augment beta-cell function (reviewed in 
previous studies86,100,101). For example, in the ACT NOW 
study,100,102 conversion of IGT to T2DM was reduced by 
72% and improvement in the insulin secretion/insulin 
resistance (disposition) index (gold standard measure of 
beta-cell function) was the strongest predictor of diabetes 
prevention.100 The improvement in beta-cell function is 
related to stimulation of PPARγ receptors on the beta cell, 
enhanced beta-cell sensitivity to glucose and reversal of 
lipotoxicity.55,103

Pioglitazone improves NASH/NAFLD

NAFLD has reached epidemic proportions in the United 
States and worldwide104 and is the precursor for NASH.105 
Diabetic patients with NASH are at high risk for cirrhosis 
and hepatocellular carcinoma.106 Patients with NAFLD/

NASH are markedly resistant to insulin, often have the 
metabolic syndrome and are also at increased risk for 
CVD.107–110 Because pioglitazone improves insulin sensi-
tivity, corrects multiple components of the IRS, amelio-
rates lipotoxicity and protects against atherosclerotic 
CVD, it would be an excellent agent for the treatment of 
NAFLD and NASH. Indeed, multiple studies have demon-
strated that pioglitazone consistently reduces hepatic fat 
content and reverses hepatic fibrosis.59–62 No other antidia-
betic agent other than rosiglitazone, a TZD, has shown 
benefit in the treatment of NAFLD/NASH.111,112

Safety concerns

Fat weight gain

Weight gain is common with pioglitazone therapy, typi-
cally amounts to ~2 to 3 kg of fat mass over 1 year16,113,114, 
and is dose related.113,115 Of note, the greater is the weight 
gain, the greater is the decline in HbA1c and the greater 
are the improvements in insulin secretion and insulin sen-
sitivity.94,99,116 How is this explained? Pioglitazone causes 
an increase in body weight by stimulating PPARγ recep-
tors in the hypothalamus to augment appetite.117 However, 
pioglitazone simultaneously stimulates PPARγ receptors 
in subcutaneous adipocytes to induce genes involved in 
adipogenesis.118 The newly formed, smaller fat cells take 
up FFA leading to a reduction in the plasma FFA concen-
tration and decreased flux of FFA into liver, muscle and 
visceral fat depots. In addition, pioglitazone stimulates 
PPARγ coactivator-1 (PGC-1) which is the master switch 
for mitochondrial biogenesis.119,120 This causes transcrip-
tion of mitochondrial genes involved in fatty acid oxida-
tion, resulting in a further reduction in the intramyocellular 
and hepatocyte lipid content with reversal of lipotoxic-
ity.2,55,121 It is noteworthy that weight gain, not weight loss, 
was associated with increased survival in the PROactive 
study.122 This observation suggests that pioglitazone also 
mobilizes fat out of the arterial wall (see preceding 
discussion).

It is notable that no specific adverse effects of the fat 
weight gain have been observed in T2DM patients 
treated with pioglitazone for up to 3–6 years.16,17,23,62,123 
Importantly, the weight gain is dose related and can be 
minimized by not exceeding a dose of 30 mg/day,113 the 
point at which ~80% of the drug’s glucose-lowering effi-
cacy is observed. Combination therapy of pioglitazone 
with metformin minimizes the weight gain,124 while 
combination therapy with a SGLT2 inhibitor19,20 or with 
a GLP-1 RA19,125,126 reduces both the weight gain and 
fluid retention.

Fluid retention and HF

When used as monotherapy, oedema is observed in 5%–
10% of pioglitazone-treated individuals and, like weight 
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gain, is dose related.113,115 When used in combination with 
a sulphonylurea or insulin, the incidence of oedema is 
increased further.115 The oedema results from two factors: 
peripheral vasodilation127 and renal sodium retention.128 
Despite increased total body sodium, blood pressure con-
sistently declines,48,49,56 indicating that the drug’s predomi-
nant effect is on the vasculature to decreased vascular tone, 
and that sodium retention is secondary to the vasodilation. 
Pioglitazone has no apparent negative effect on LV func-
tion48,49 and improves diastolic dysfunction.48–52 
Nonetheless, pioglitazone should not be used in T2DM 
patients with symptomatic HF since fluid accumulation in a 
noncompliant ventricle can precipitate HF in such individ-
uals, leading to clinical deterioration.115 Salt and water 
retention respond best to diuretics that act in the distal 
tubule such as spironolactone, triamterene and amiloride.115 
Patients should be instructed to report new oedema or dysp-
noea to their physician. If more than trace oedema is pre-
sent, treatment with one of the distally acting diuretics 
should be instituted and/or the dose of pioglitazone reduced. 
Of note, in the IRIS study,17 the number of patients who 
developed HF was similar in the pioglitazone-treated 
(n = 74) and placebo-treated (n = 71) groups and this study 
did allow for dose reduction for oedema or weight gain not 
responding to initial lifestyle recommendations.

Bone fractures

An increase in bone fractures has been reported in T2DM 
individuals treated with TZDs.17,129–132 The fractures pri-
marily affect postmenopausal women, occur in the distal 
long bones of the hands and feet and are related to trauma. 
One study has reported an increase in fractures in men,17 
while some studies have failed to observe any increase in 
fractures in either sex.46 The excess fracture risk amounts 
to 0.8 fractures per 100 patient-treatment years (1.9 vs 1.1 
in pioglitazone vs comparator-treated group).129–132 
Fractures are uncommon in premenopausal women and 
men. Pioglitazone should be used cautiously or not at all in 
individuals at high fracture risk, including postmenopausal 
women with osteoporosis or those with prior fracture.

Bladder and cancer

In PROactive,16 there was a nonsignificant increase in the 
number (16 vs 6, p = 0.069) of patients who developed 
bladder cancer. Before unblinding of the results, external 
experts adjudicated that 11 cases could not plausibly be 
related to treatment (due to the temporal sequence of drug 
exposure and cancer diagnosis), leaving six cases in the 
pioglitazone group and three cases in the placebo group 
(p = 0.309). Of note, there were significantly fewer cases 
of breast cancer (3 vs 11, p = 0.034) in the pioglitazone-
treated group and the overall incidence of cancer was simi-
lar in both groups. Also, after 10 years of follow-up, the 

incidence of bladder cancer was similar in pioglitazone-
treated versus placebo-treated subjects (28 vs 26, respec-
tively).23 After PROactive, the FDA requested that the 
manufacturer of pioglitazone initiates a prospective study 
to examine the relationship between pioglitazone and 
bladder cancer. A midpoint analysis of this 10-year study133 
involving 193,099 patients revealed no significant associa-
tion between pioglitazone and bladder cancer (HR = 1.2, 
95% CI = 0.9–1.5, p = NS), but those who were exposed for 
at least 2 years had a small increased risk (HR = 1.4, 95% 
CI = 1.0–2.0). The 10-year follow-up data, however, failed 
to find any such association between pioglitazone and 
bladder cancer with sensitivity analyses showing that the 
neutral effect was present irrespective of dose and duration 
of therapy (HR = 1.06, 95% CI = 0.89–1.26, p = NS).134 In a 
multinational cohort135 involving 1.01 million T2DM 
patients with greater than 5.9 million person-years, the HR 
for bladder cancer with pioglitazone and rosiglitazone was 
1.01 and 1.00, respectively (both p = NS). In the recently 
published IRIS study,17 no increase in bladder cancer was 
observed in the pioglitazone group (0.6% vs 0.4%, 
p = 0.37). Based upon the preceding body of evidence, 
however, the FDA still cautions about this risk and recom-
mends that pioglitazone not be used in diabetic patients 
with active bladder cancer or history of bladder cancer.

Summary

As we transition to a new evidence-based era of T2DM 
management in patients with CVD,15 it is imperative that 
we choose therapies that not only improve glycaemic con-
trol but also improve CV outcomes–the latter representing 
the greatest cause of mortality in this population. 
Pioglitazone has been shown to reduce MACE (MI, stroke 
and CV mortality) in multiple studies including 
PROactive,16 IRIS,17 meta-analyses of multiple prospec-
tive studies;21,22 to reduce CV events and mortality in sev-
eral large observational studies;24–26,40 to retard the 
anatomical progression of coronary and carotid atheroscle-
rosis in PERISCOPE,27 Chicago28 and ACT NOW (Table 
2).102 Pioglitazone is the only available insulin-sensitizing 
agent and has a potent beneficial effect to improve and pre-
serve beta-cell function, leading to a durable reduction in 
HbA1c (Table 2). Pioglitazone also corrects multiple com-
ponents of the metabolic syndrome and is an effective 
treatment for NASH/NAFLD. Side effects remain a con-
cern but can be mitigated by optimizing dosing strategies 
and combining therapy with other medications (metformin, 
SGLT2i, GLP-1 RA) that promote weight loss and sodium 
excretion. The benefit to risk ratio of pioglitazone is very 
favourable when caution is employed to avoid the known 
side effects of the drug (Table 2). Moreover, pioglitazone 
is now generically available and some 50 times less expen-
sive than many branded glucose-lowering drugs with 
recent CV benefits. It, therefore, represents a highly afford-
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able option for the treatment of patients with T2DM, espe-
cially those with prevalent CVD.
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Introduction

The advent of reliable plasma insulin assays in the 1960s 
provided the opportunity for Gerald Reaven et al.1 to dis-
cover the association between the insulin response to car-
bohydrate feeding and serum triglyceride levels. Higher 
insulin responses were associated with higher triglyceride 
levels.1 Reaven and others went on to report that a con-
stellation of other abnormalities was also associated with 
an exaggerated insulin response in addition to hypertri-
glyceridaemia, including type 2 diabetes mellitus (T2DM) 
or a predisposition to it, high-density lipoprotein choles-
terol (HDL-C), non-alcoholic steatohepatitis, hyperten-
sion, hyperuricaemia and raised plasminogen activator 
inhibitor-1 (PAI-1), fibrinogen and highly sensitive 
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C-reactive protein (hs-CRP).2–5 This, he termed ‘Syndrome 
X’,2 although it is now more widely known as the meta-
bolic syndrome, particularly when associated with obe-
sity. Initially, Reaven’s hypothesis stated that increased 
insulin levels were the cause of the hypertriglyceridaemia, 
because insulin was at that time believed to stimulate 
hepatic very low-density lipoprotein (VLDL) secretion.1 
However, later experiments with adult hepatocytes main-
tained in tissue culture showed that the primary effect of 
insulin on hepatic VLDL secretion was inhibitory.6–8 
Thus, the hypertriglyceridaemia was due to insulin resist-
ance, rather than hyperinsulinaemia, as previously pro-
posed by Himsworth9 many years previously.  Reaven 
thus modified his hypothesis and extended it to state that 
both muscle and the liver must be resistant to the action of 
insulin, at least in relation to their diminished capacity for 
the uptake of glucose, and therefore, the increased insulin 
levels were a response to overcome the insulin resistance. 
That hepatic insulin resistance could also explain the 
hypertriglyceridaemia of metabolic syndrome and T2DM, 
was later confirmed in human studies of VLDL kinet-
ics.10–12 Throughout his life Reaven continued to argue, 
however, that it was impossible using available techniques 
and models to separate the effects of insulin resistance 
from the effects of too much insulin in humans.13 It is 
known that insulin resistance due to inherited insulin 
receptor defects results in reduced glucose uptake and 
hyperinsulinaemia, but does not lead to hypertriglyceri-
daemia or hepatic steatosis.14 However, after its uptake by 
functioning receptors, insulin regulates multiple intracel-
lular pathways through several signalling mechanisms.15 
It therefore remains entirely possible that some of these 
are resistant to insulin, whereas, as Reaven originally pos-
tulated, others are over-stimulated by the hyperinsulinae-
mia which develops to maintain euglycaemia. When the 
increased delivery of insulin is inadequate to overcome 
insulin resistance to glucose uptake, T2DM develops, but 
the insulin levels are much higher than in healthy, non-
obese, people without diabetes.16

The provision of evidence that hyperinsulinaemia/insu-
lin resistance is causal for hypertriglyceridaemia and the 
other components of the metabolic syndrome was, until 
the advent of bariatric surgery, hampered by the lack of a 
means of dramatically reversing it. Drugs which decrease 
insulin resistance tend to have multiple other actions and 
the effect of weight reduction through dietary restriction 
can only be studied when a large proportion of failures are 
excluded. Bariatric surgery provides a means of substan-
tially and consistently reversing hyperinsulinaemia/insulin 
resistance. While the substantial decrease in adiposity may 
explain this reversal of hyperinsulinaemia/insulin resist-
ance, additional mechanisms such as changes in gut hor-
mone profiles due to intestinal bypass may contribute. We, 
and others, have previously reported a decrease in elevated 
levels of inflammatory cytokines and an increase in 

adiponectin after bariatric surgery.17–20 These cytokines 
emanate from adipose tissue and those from visceral adi-
pose tissue, particularly interleukin-6 (IL-6), arrive at the 
liver via the portal circulation,21 and are believed to be 
responsible for hepatic resistance to insulin-mediated glu-
cose uptake.22

Quite why the metabolic syndrome is associated with an 
increased risk of atherosclerotic cardiovascular disease 
(CVD) has never been fully explained. Increases in low-
density lipoprotein cholesterol (LDL-C) and in its major 
protein moiety, apolipoprotein B (ApoB), which are defi-
nitely causal, are not a feature of metabolic syndrome.2,23 
Moderate hypertriglyceridaemia, typical of the metabolic 
syndrome has proved controversial as a cause of CVD,24 
and the role of high-density lipoprotein (HDL) in athero-
genesis is currently being re-evaluated.25 We have previ-
ously made a preliminary report of a decrease in small, 
dense low-density lipoprotein (SD-LDL) following bariat-
ric surgery.18 SD-LDL is increased in hypertriglyceridae-
mia 26–28 and is particularly susceptible to atherogenic 
modifications, such as oxidation and glycation.29,30 
Inflammatory cytokines associated with atherothrombosis 
may also make a major contribution to CVD in metabolic 
syndrome.31 In the present study, we have undertaken a 
comprehensive assessment of the effect of bariatric surgery 
on insulin secretion and insulin resistance in relation to the 
change in SD-LDL and IL-6, an upstream regulator of 
C-reactive protein (CRP),4 as there is emerging evidence 
from Mendelian randomisation studies that it has a longer 
term association with CVD than hs-CRP.32,33 We have 
sought to establish the basis for the change in insulin secre-
tion and insulin resistance after bariatric surgery, to further 
understand the basis of the Reaven hypothesis.

Methods

Study design and patient recruitment

This study was a prospective observational cohort study. 
Forty patients (8 men and 32 women) with obesity were 
recruited from the pre-bariatric surgery clinic at Salford 
Royal Hospital, a Tier 4 specialist weight management ser-
vice in the North West of England. They all underwent 
Roux-en-Y laparoscopic gastric bypass surgery.

Prior ethical approval was sought and granted by the 
Central Manchester Research and Ethics Committee. All 
patients were given detailed information about the study 
and each person provided informed consent before taking 
part in the study.

Patient assessments

Patients were asked to attend a morning appointment 
(between 09:00 and 10:30 h) having fasted from 22:00 h at 
baseline and then 6 and 12 months after bariatric surgery. 
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At each visit, a detailed medical history including medica-
tion used was assessed. Each participant underwent meas-
urement of their weight and height and body mass index 
(BMI) was calculated. Blood pressure was measured after 
resting in a seated position for 15 min, using an Omron 
HEM 705-CP semiautomatic oscillometric recorder. 
Fasting venous blood was collected at each visit. Metabolic 
syndrome was defined using the current revision from the 
National Cholesterol Education Programme Adult 
Treatment Panel III.23

Complete remission from type 2 diabetes was deter-
mined 12 months post-operatively with glycated haemo-
globin (HbA1c) below 6.0% (42 mmol/mol) and no active 
pharmacological therapy, as per the American Diabetes 
Association consensus statement.34

Laboratory procedures and analyses

HbA1c and fasting glucose were assessed in the biochemis-
try laboratory at Manchester University Hospitals NHS 
Foundation Trust using routine methods. The remaining 
samples were processed in the Cardiovascular Research Lab 
at the University of Manchester. Laboratory procedures and 
measurements were carried out according to our previously 
described protocol.18 Serum and ethylenediaminetetraacetic 
acid (EDTA)-plasma were isolated by centrifugation at 
2000 × g for 15 min at 4°C within 2 h of blood collection. 
Aliquots for biochemical analysis were frozen at −80°C.

Total cholesterol was measured using the cholesterol  
oxidase phenol 4-aminoantipyrine peroxidase method and 
triglycerides by the glycerol phosphate oxidase phenol 
4-aminoantipyrine peroxidase method. HDL-C was meas-
ured using a second-generation homogeneous direct method 
(Roche Diagnostics, Burgess Hill, UK). LDL-C was esti-
mated using the Friedewald formula.35 ApoB was measured 
using immunoturbidimetric assays (ABX Diagnostics, 
Shefford, UK). All these tests were performed on a Cobas 
Mira analyser (Horiba ABX Diagnostics, Nottingham, UK).

Small, dense low-density lipoprotein apolipoprotein B 
(SD-LDL ApoB; LDL particles of density > 1.044 g/mL) 
was isolated from plasma and ultracentrifuged at 100,000 r/
min (435,680 × g) for 5 h at 4°C using a Beckman Optima 
TLX bench top ultracentrifuge fitted with TLA 120.2 fixed 
angle rotor (Beckman Coulter UK).36 ApoB in SD-LDL 
was then determined using an immunoturbidimetric assay 
(ABX Diagnostics). SD-LDL is thus expressed in terms of 
the plasma concentration of its ApoB component.

An in-house, antibody sandwich enzyme-linked immu-
nosorbent assay (ELISA) technique using anti-human 
CRP antibody, calibrators and controls from Abcam 
(Cambridge, UK) was used to measure hs-CRP. IL-6 was 
measured by ELISA using kits from R&D Systems 
(Abingdon, UK). The upper limit (95th percentile) for IL-6 
in plasma was 3.1 pg/mL.37 Plasma insulin was measured 
with Mercodia ELISA kits from Diagenics Ltd. (Milton 

Keynes, UK). Homeostatic model assessment of insulin 
resistance (HOMA-IR) was used to assess insulin resist-
ance,38 using the formula

HOMA-IR= insulin mU/L glucose mmol/L /22.5( ) ( ) ×

The laboratories participated in the UK National External 
Quality Assessment Service (UKNEQAS, Birmingham, 
UK) for quality control of general blood chemistry.

Statistical analysis

SPSS for Mac (Version 23.0; IBM SPSS Statistics, IBM 
Corp., Armonk, NY) and GraphPad Prism (Version 7.00; 
GraphPad Software, La Jolla, CA, USA) were used for anal-
ysis of data. Tests for normality were done using the 
Shapiro–Wilk test, visualisation of histograms and Q-Q 
plots. When more than two time points were being com-
pared, one-way ANOVA was used for parametric data and 
Friedman’s two-way analysis of variance by Ranks was 
used for non-parametric data. Specific post hoc pairwise 
comparisons were done using the Bonferroni correction in 
SPSS. The McNemar test was used to compare paired cate-
gorical variables. The percentage change in variables was 
determined as the absolute difference between measure-
ments 12 months after surgery and baseline divided by the 
baseline value (and multiplied by 100). Correlation analysis 
was done using Pearson’s test for parametric and Spearman’s 
test for non-parametric data. A p-value of <0.05 was con-
sidered to be statistically significant.

Results

Clinical characteristics

The baseline and post-operative clinical measures are 
given in Table 1. The mean age of participants was 48 years. 
BMI, waist circumference and systolic blood pressure 
were reduced significantly (p < 0.05), with no significant 
change in diastolic blood pressure (p = 0.15). Of the 40 
patients, 20 had T2DM pre-operatively and remitted com-
pletely in 13 out of 20 (65%) patients 12 months after sur-
gery (p < 0.001). There was a significant reduction in the 
number of participants meeting the diagnostic criteria for 
the metabolic syndrome (p < 0.001) and there was a trend 
towards reduction in the use of lipid-lowering drugs 
(p = 0.06) after bariatric surgery.

Laboratory measurements

Results of the laboratory measurements are shown in  
Table 2 and Figure 1. In the entire cohort, there were sig-
nificant (p < 0.05) reductions in the triglycerides, HDL-C, 
SD-LDL ApoB, hs-CRP, IL-6, HbA1c, glucose, insulin 

06_DVR826479.indd   146 15/03/2019   12:04:03 PM



Adam et al. 147

and HOMA-IR, 12 months post-operatively with interme-
diate values at 6 months. Total ApoB levels were signifi-
cantly reduced only at 12 months and total cholesterol and 
LDL-C did not change significantly.

Subgroup analysis of the patients with and without 
diabetes showed similar results, except patients without 
diabetes had a significant reduction (p = 0.01) in LDL-C 
compared to those with diabetes. The significant improve-
ments in triglycerides, HDL-C, SD-LDL ApoB, hs-CRP, 
IL-6, HbA1c, glucose, insulin and HOMA-IR were seen 
both in patients using statins (n = 23) and those not on 
statins (n = 17). Those using statins had higher serum 
total ApoB, reflecting a more severe dyslipidaemia phe-
notype. Patients not on statin therapy showed a greater 
reduction in total ApoB, but this was not statistically sig-
nificant (p = 0.12) (Supplementary Table 1).

Relationships between fasting insulin, 
HOMA-IR and other metabolic 
variables

Correlations of values at baseline and 
12 months post-operatively

The relationships at baseline between fasting insulin and 
BMI are illustrated in Figure 2(a) and with HOMA-IR and 
BMI in Figure 2(c). The association between post-opera-
tive fasting insulin and BMI is shown in Figure 2(b) and 
for HOMA-IR and BMI in Figure 2(d).

Both pre-operatively and 1 year post-operatively, fasting 
insulin levels correlated significantly with HDL-C levels 
(r = –0.37; p = 0.02 and r = –0.40; p = 0.01, respectively). 
HOMA-IR measurements showed a significant association 

with triglycerides (r = 0.34; p = 0.03) and HDL-C (r = –0.39; 
p = 0.01) at baseline and at 12 months (triglycerides r = 0.36; 
p = 0.02, HDL-C r = –0.42; p = 0.007). Triglycerides were 
not significantly correlated with insulin (r = 0.22; p = 0.18) at 
baseline, but were weakly correlated at 12 months post-
operatively (r = 0.31; p = 0.05). Pre-operatively, IL-6 corre-
lated with BMI (r = 0.43; p = 0.009), but not with insulin 
levels or HOMA-IR. The relationship with BMI was weaker 
post-operatively (r = 0.31; p = 0.07) possibly because of the 
loss of visceral fat. IL-6 correlated with hs-CRP post-opera-
tively (r = 0.42; p = 0.007).

Association of change in hyperinsulinaemia and 
insulin resistance

The percentage change (Δ) in fasting insulin levels between 
the pre- and post-operative state was related to Δtriglycerides 
(r = 0.36; p = 0.03), Δhs-CRP (r = 0.42; p = 0.01), ΔIL-6 
(r = 0.41; p = 0.02) and ΔBMI (r = 0.43; p = 0.007). There 
were also significant correlations between ΔHOMA-IR 
with Δtriglycerides (r = 0.33; p = 0.04), Δhs-CRP (r = 0.37; 
p = 0.02) and ΔIL-6 (r = 0.37; p = 0.03).

Discussion

This study shows that a marked reduction in hyperinsuli-
naemia/insulin resistance in obese people after bariatric 
surgery ameliorates not only raised triglycerides, hs-CRP 
and low HDL-C, features of the Reaven syndrome,2 but 
also SD-LDL and IL-6, irrespective of the presence of 
T2DM or statin therapy.

SD-LDL concentration increases with triglyceride  
levels.26 It is a cholesterol-depleted low-density lipoprotein 

Table 1. Clinical parameters before and after bariatric surgery.

Baseline 6 months 12 months p

Age at time of surgery (years) 48 (8)  
Female (%) 32 (80)  
Diabetes presence (%) 50.0 17.5 <0.001
Lipid-lowering drugs (%) 57.5 45.0 0.063
Metabolic syndrome (%) 72.5 22.5 <0.001
Body mass index (kg/m2) 49.5 (45.0–57.0) 36.5 (32.8–44.0)††† 33.0 (30.0–38.8)§§§,*** <0.001
Waist circumference (cm) 137 (128–150) 112 (106–125)††† 104 (95.0–115)§§,*** <0.001
Systolic blood pressure (mmHg) 131 (120–145) 127 (110–140) 119 (109–134)* 0.025
Diastolic blood pressure (mmHg) 75.0 (13.0) 75.0 (13.0) 70.0 (11.0) 0.150
Excess body mass index loss (%) 65.9 (18.0)  

Clinical parameters at baseline, 6 and 12 months after bariatric surgery. Data represented as mean (SD) or median (IQR). Percentages in categorical 
variables represent proportion of participants with type 2 diabetes, using lipid-lowering therapy or fulfilling the diagnostic criteria for the metabolic 
syndrome. Remission of type 2 diabetes determined with a glycated haemoglobin below 42 mmol/mol (6.0%) and no active pharmacological therapy 
as per the American Diabetes Association consensus statement. Metabolic syndrome defined using the current National Cholesterol Education 
programme Adult Treatment Panel III.
Bold values shows statistically significant results.
Baseline compared to 6 months: *p < 0.05; **p < 0.01; ***p < 0.001.
Baseline compared to 12 months: †p < 0.05; ††p < 0.01; †††p < 0.001.
6 months compared to 12 months: §p < 0.05; §§p < 0.01; §§§p < 0.001.
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(LDL), the presence of which is not evident from measure-
ment of LDL-C. It contributes to total serum ApoB and is 
the cause of hyperapobetalipoproteinaemia,39 but the 
majority of ApoB-containing lipoproteins are of lower 
density so that even when total ApoB is measured its pres-
ence may not be obvious. It is likely that it is the cause of 
the association between hypertriglyceridaemia and 
CVD.24,26,27 SD-LDL is more susceptible both to oxidative 
and glycative modification than less dense LDL spe-
cies.29,30 Both oxidatively modified and glycated LDL, 
unlike more buoyant, unmodified LDL, are rapidly taken 
up via scavenger receptors on macrophages in tissue cul-
ture to become foam cells similar to those in atheromatous 
lesions.40 In our series of patients, the SD-LDL concentra-
tion of 22.1 mg/dL at baseline declined to 10.2 mg/dL 
12 months after bariatric surgery, restoring its levels close 
to the median value in a healthy population (14 mg/dL for 
men and 9 mg/dL for women).41

A raised level of hs-CRP is recognised as a feature of 
metabolic syndrome2 and is closely associated to the risk of 
developing CVD.4 However, evidence that hs-CRP is caus-
ally related to CVD has not been forthcoming.4 On the other 
hand IL-6, a major regulator of hepatic CRP secretion, 

unlike CRP, has been found in Mendelian randomisation 
studies to be linked to atherosclerosis.4,32,33 Many adi-
pokines are released both from peripheral and visceral adi-
pose tissue, which have the potential to contribute to hepatic 
insulin resistance and secretion of CRP, but those released 
from visceral fat may have a special place in the genesis of 
the metabolic syndrome, because they arrive at the liver 
through the portal vein and may do so at higher concentra-
tion than those arriving by the hepatic artery after dilution in 
the systemic circulation. IL-6 was found in much higher 
concentration in portal blood than in systemic arterial blood 
by Fontana et al.21 in patients undergoing gastric bypass sur-
gery for obesity. Tumour necrosis factor-α, resistin, mac-
rophage chemoattractant protein-1 and adiponectin 
concentrations were similar in the portal vein and radial 
artery. Portal vein IL-6 concentration also correlated directly 
with systemic CRP. The decrease in IL-6 after bariatric sur-
gery, suggests that it could be associated with the decrease 
in hs-CRP and other features of hepatic insulin resistance. 
Recently, reduction in IL-6 levels similar to that reported 
here, but achieved by administration of a monoclonal anti-
body to interleukin-1β, was reported to be associated with 
decreased atherosclerotic CVD incidence.31

Figure 1. The responses to bariatric surgery in the whole 40 patients and in those with and without type 2 diabetes separately 
before and at 6 and 12 months post-operatively in (a) fasting triglycerides, (b) high-density lipoprotein cholesterol (HDL-C), 
(c) small, dense low-density lipoprotein apolipoprotein B (SD-LDL ApoB), (d) highly sensitive C-reactive protein (hs-CRP), (e) 
interleukin-6 (IL-6) and (f) insulin resistance (HOMA-IR). Bars are median + 75th percentile.
Baseline compared to 6 months: *p < 0.05; **p < 0.01; ***p < 0.001.
Baseline compared to 12 months: †p < 0.05; ††p < 0.01; †††p < 0.001.
6 months compared to 12 months: §p < 0.05; §§p < 0.01; §§§p < 0.001. 
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The findings of this and earlier reports in which the 
effects of the decrease in insulin resistance accompanying 
weight loss on components of the metabolic syndrome have 
been investigated,17–20 provide powerful support for 
Reaven’s hypothesis. Bariatric surgery which induces the 
most dramatic decreases in hyperinsulinaemia/insulin resist-
ance is a model which could yield an even greater under-
standing of, for example, the mechanism by which atheroma 
risk is increased. Our finding of a decrease in SD-LDL 
should lead to exploration of the effects of weight loss due 
to bariatric surgery on modified, potentially highly athero-
genic LDL subspecies, such as oxidised and glycated LDL. 
Furthermore, it could lead to some resolution of the conflict 
which exists between which components of the metabolic 
(Reaven) syndrome are due to resistance to insulin (too little 
insulin action) and which are due to hyperinsulinaemia itself 
(too much insulin action). In recent years, it has often been 
forgotten that, because insulin regulates several intracellular 
signalling pathways controlling a variety of processes, while 
its effects will be deficient in pathways resistant to it, in oth-
ers the high levels of insulin produced to attempt to maintain 
euglycaemia may hyperstimulate non-resistant pathways. 

An example might be the regulation of sex hormone–bind-
ing globulin (SHBG), which is decreased in insulin resist-
ance, leading to increased free androgen levels in both men 
and women.42,43 This at least partly explains the androgeni-
sation of insulin resistant women and thus their male pat-
tern (visceral; central) obesity and hirsutism. Despite the 
association of insulin resistance with decreased SHBG, 
however, tissue culture experiments with human hepato-
cytes reveal insulin to have an inhibitory action on SHBG 
production.44,45 Thus, unlike the VLDL production path-
way where insulin resistance decreases the inhibitory 
effect of insulin despite the increase in its concentration in 
response to resistance to glucose uptake, the pathway for 
the production of SHBG must escape resistance to the 
action of insulin and be inhibited by hyperinsulinaemia. 
The model of bariatric surgery may provide opportunities 
for futher study of this mechanism as it may for other phe-
nomena associated with the hyperinsulinaemia of insulin 
resistance, such as the pathways linking metabolic syn-
drome to hyperuricaemia.46

It has been difficult to distinguish components of the 
metabolic syndrome due to resistance to insulin action 

Figure 2. Fasting insulin and homeostatic model assessment of insulin resistance (HOMA-IR) as a function of body mass index 
(BMI) at baseline [panels (a) and (c)] and 12 months after bariatric surgery [panels (b) and (d)].
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and those hyperstimulated by the ensuing increase in 
insulin secretion to maintain euglycaemia as first dis-
cussed in Kim and Reaven.13 We found that the strength 
of the associations between change in components of the 
metabolic syndrome, such as triglycerides and HDL-C, 
and change in fasting insulin and HOMA-IR were similar 
with perhaps the suggestion that triglyceride concentra-
tion was more closely related to insulin resistance and 
HDL-C to fasting insulin levels. It has been suggested 
that the insulin clamp technique would be a better means 
of assessing insulin resistance rather than HOMA-IR, 
which relies on the ratio between fasting insulin and glu-
cose.38 However, this argument is less persuasive when it 
is considered that in insulin clamping, the insulin is 
administered into the systemic rather than the portal cir-
culation into which it is secreted physiologically.47 This 
means that physiologically the liver is subject to much 
higher levels than peripheral tissues and the insulin clamp 
is thus measuring insulin resistance to glucose uptake in 
tissues, such as skeletal muscle, while hepatic uptake is 
relatively unaffected by insulin arriving by the hepatic 
artery. Presumably, HOMA-IR, however, represents the 
contribution of both hepatic and peripheral glucose dis-
posal. At the time of bariatric surgery, direct measure-
ment of hormones and metabolites in portal venous blood 
can be undertaken,21 but repetition of this after weight 
loss is not possible, at least in human models. Nonetheless, 
discovering which processes are resistant to insulin and 
which are over-stimulated by the accompanying hyperin-
sulinaemia could be important therapeutically.

We conclude that bariatric surgery provides an excel-
lent model to dissect Reaven’s hypothesis, to discover the 
mechanisms by which its components, such as raised 
SD-LDL and IL-6, cause atherosclerosis. It also raises 
questions about the respective roles of insulin resistance 
and of hyperinsulinaemia on different components of the 
metabolic syndrome.
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Introduction

The risk of cardiometabolic conditions including type 2 
diabetes, dyslipidemia and atherosclerotic cardiovascular 
disease varies across race/ethnic groups.1–4 While the rea-
sons for this variability are not completely understood, it 
has been postulated that underlying differences in insulin 
sensitivity5–8 may be partly responsible. Insulin sensitivity 
varies widely in apparently healthy individuals.9–13 
Although variability in insulin action does not seem to be 
unique to any given race/ethnic group, the degree of insu-
lin sensitivity does appear to vary with race/ethnicity, at 
least in small studies mostly utilizing surrogate estimates 
of insulin sensitivity.9,10,14,15 Decreased insulin sensitivity 
(insulin resistance) is also associated with increases in 
plasma triglyceride (TG) concentration, an emerging 
causal risk factor for atherosclerotic cardiovascular dis-
ease,16,17 and there is evidence that the association between 
insulin resistance and TG levels may also vary as a func-
tion of differences in race/ethnicity.18–20 Plasma TG levels 
may not only reflect insulin sensitivity but are likely to 

mediate negative consequences of insulin resistance. 
Given the importance of insulin resistance and compensa-
tory hyperinsulinemia in the pathogenesis of cardiometa-
bolic diseases, we sought to provide a more comprehensive 
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evaluation of the impact of differences in race/ethnicity on 
insulin resistance and its associated dyslipidemia. This 
work differs from the many manuscripts that have 
addressed this issue in the past for three crucial reasons: 
(1) data are available from five different race/ethnic 
groups; (2) insulin resistance was quantified by a direct 
measurement of insulin-mediated glucose disposal, not a 
surrogate estimate; and (3) the groups were compared not 
only on their degree of insulin resistance but also on the 
relationship between insulin resistance and its closest lipid 
consequence – changes in plasma TG concentration.

Methods

Study design and patient population

Data for this cross-sectional study were obtained from a 
database containing clinical information for individuals 
who have previously participated in research studies at 
Stanford University (Stanford, CA) between 1991 and 2014. 
To be included, individuals had to have no anaemia (haemo-
globin <10 g/dL) or cardiovascular, kidney or liver disease. 
Subjects were excluded if they had a history of diabetes as 
defined as fasting glucose ⩾126 mg/dL by the American 
Diabetes Association21 or were taking medications that 
could affect carbohydrate metabolism. All individuals were 
categorized through self-identification by the following 
race/ethnic groups: non-Hispanic White, Hispanic White, 
South Asian, East Asian and African American.

Measurements

All procedures were performed in the Stanford General 
Clinical Research Center after fasting for 12 h. Subjects had 
body weight and height measured for calculation of body 
mass index (BMI; in kg/m2). Plasma glucose was deter-
mined by the oxidase method (Analyzer 2; Beckman, Brea, 
CA). Lipoprotein concentrations were performed in the core 
laboratory at Stanford by standardized methods approved 
by the Centers for Disease Control and Prevention. Low-
density lipoprotein cholesterol (LDL-C) concentration was 
calculated (except for 26 subjects whose LDL-C could not 
be calculated due to a TG concentration >400 mg/dL).

Insulin-mediated glucose disposal was measured using 
the modified insulin suppression test.22,23 After an over-
night fast, individuals were administered a continuous 
infusion of octreotide acetate (0.27 μg/m2/min), insulin 
(32 mU/m2/min) and glucose (267 mg/m2/min). Blood was 
sampled every 30 min until steady-state plasma glucose 
(SSPG) and steady-state plasma insulin (SSPI) levels were 
achieved. From 150 to 180 min of the infusion, blood was 
sampled at 10-min intervals. These final four results were 
used to determine SSPG and SSPI concentrations for each 
individual. Because octreotide acetate was used to inhibit 
endogenous secretion of insulin, each subject had a similar 

SSPI concentration. Therefore, the SSPG concentration 
for each individual represented an estimate of the ability of 
insulin to mediate disposal of infused glucose – that is, 
higher SSPG concentration reflected greater degree of 
peripheral insulin resistance.

Statistical analysis

Continuous variables were analysed using analysis of co-
variance (ANCOVA). For racial/ethnic differences in insu-
lin sensitivity, the Bonferroni correction was used for 
seven post hoc pairwise comparisons (non-Hispanic White 
vs Hispanic White, South Asian, East Asian and African 
American groups and African American vs Hispanic 
White, South Asian and East Asian groups). These specific 
comparisons were chosen a priori to focus on the groups 
that were most likely to differ based on prior literature and 
to decrease the number of tests. Categorical variables were 
analysed using the chi-squared test. Linear regression was 
performed to examine the relationship between insulin 
resistance and TG, LDL-C and high-density lipoprotein 
cholesterol (HDL-C) levels, again using the Bonferroni 
correction for the seven pairwise comparisons outlined 
above when appropriate. TG values were log-transformed 
to improve normality of distribution. For all statistical 
analyses, a two-sided p value ⩽0.05 was considered statis-
tically significant. All analyses were done using SPSS 
(Version 24.0, IBM Corp., Armonk, NY). Results are 
expressed as means with standard deviations and count 
frequencies with percentages unless otherwise specified.

Results

Baseline characteristics

Table 1 summarizes the baseline characteristics of the 
study population by race/ethnicity and sex. There were 
1025 individuals, of whom n = 646 (63%) were non-His-
panic White, n = 91 (9%) were Hispanic White, n = 118 
(11%) were South Asian, n = 109 (11%) were East Asian 
and n = 61 (6%) were African American. Women com-
prised 60% of the total sample population, and there was a 
similar sex distribution across all race/ethnic groups 
(p = 0.1). Only 11.8% of study participants were being 
treated with anti-hyperlipidemic agents. Of those, 93% 
were on statins, 6% on fibrates and 1% on ezetimibe.

Insulin resistance by race/ethnicity

The unadjusted SSPG levels for males and females in all 
five race/ethnic groups are provided in Table 2. After 
adjustments for age, sex and BMI, non-Hispanic Whites 
and African Americans had significantly lower SSPG lev-
els (i.e. higher insulin sensitivity) than their South Asian 
and East Asian counterparts (Table 3).
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Relationship between insulin resistance and 
TG, LDL-C and HDL-C concentration by race/
ethnicity

Linear regression was used to determine the relationship 
between insulin resistance and natural log-transformed TG 
levels along with LDL-C and HDL-C levels after adjust-
ments for age, sex and BMI. For all five groups, there was 
a significant, positive relationship between SSPG and TG 
levels on the log scale. Additionally, for a given level of 

insulin sensitivity, African Americans tended to have the 
lowest TG levels across all five race/ethnic groups, although 
these differences were only significant compared to non-
Hispanic Whites (Table 4). There was no significant rela-
tionship between SSPG and LDL-C levels. While there was 
a significant, negative relationship between insulin resist-
ance and HDL-C levels for all five groups, there was no 
race/ethnic difference in HDL-C level at a given level of 
insulin sensitivity. The statistical relationships between 
insulin resistance and natural log-transformed TG levels 

Table 1. Baseline characteristics by race/ethnicity and sex.

Non-Hispanic 
White

Hispanic White South Asian East Asian African American p value

N
 Male 273 35 34 42 23 –
 Female 373 56 84 67 38 –
Age (years)
 Male 51 ± 10 46 ± 10 47 ± 11 51 ± 9 47 ± 8 <0.01
 Female 52 ± 10 48 ± 9 41 ±11 46 ± 12 48 ± 9 <0.01
BMI (kg/m2)
 Male 29.9 ± 4.4 32.8 ± 5.6 27.0 ± 4.3 28.1 ± 3.7 30.8 ± 5.0 <0.01
 Female 29.6 ± 5.3 32.6 ± 7.5 28.0 ± 3.9 28.7 ± 5.6 33.3 ± 7.9 <0.01
TC (mg/dL)
 Male 190 ± 44 185 ± 39 198 ± 41 201 ± 48 174 ± 38 0.13
 Female 199 ± 36 197 ± 32 175 ± 35 202 ± 42 184 ± 33 <0.01
TGa (mg/dL)
 Male 168 ± 11 158 ± 29 194 ± 30 195 ± 27 112 ± 36 0.03
 Female 126 ± 5 122 ± 14 114 ± 11 151 ± 12 100 ± 16 0.12
HDLC (mg/dL)
 Male 42 ± 11 39 ± 9 39 ± 9 41 ± 13 43 ± 13 0.37
 Female 53 ± 14 50 ± 15 48 ± 11 52 ± 14 49 ± 15 0.02
LDLC (mg/dL)
 Male 117 ± 36 115 ± 28 118 ± 28 130 ± 50 109 ± 34 0.19
 Female 121 ± 31 122 ± 24 104 ± 28 122 ± 33 115 ± 31 <0.01
FPG (mg/dL)
 Male 99 ± 10 103 ± 9 95 ± 12 101 ± 10 97 ± 8 0.01
 Female 97 ± 10 96 ± 8 94 ± 9 98 ± 9 96 ± 10 0.11

BMI: body mass index; TC: total cholesterol; TG: triglyceride; HDLC: high-density lipoprotein cholesterol; LDLC: low-density lipoprotein choles-
terol; FPG: fasting plasma glucose.
Data are shown as mean ± standard deviation. The value of p ⩽ 0.05 is considered statistically significant.
aStatistical analysis was performed on natural log-transformed TG values.

Table 2. SSPG by sex and race/ethnicity (unadjusted).

Non-Hispanic White Hispanic White South Asian East Asian African American p value

Male 154 ± 4 204 ± 12a,b 183 ± 12 166 ± 11 141 ± 14 <0.01
 (146, 163) (181, 226) (160, 206) (145, 187) (113, 169)  
Female 150 ± 4 179 ± 10a 167 ± 8 186 ± 9a 176 ± 12 <0.01
 (142, 157) (160, 199) (151, 183) (168, 204) (152, 199)  

SSPG: steady-state plasma glucose; SE: standard error.
Data shown as mean ± SE and 95% confidence interval (in parentheses). SSPG values are given in mg/dL. The value of p ⩽ 0.05 is considered statisti-
cally significant.
aStatistically significant difference compared to non-Hispanic White individuals.
bStatistically significant difference compared to African American individuals.
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along with LDL-C and HDL-C levels remained the same 
after exclusion of patients on anti-hyperlipidemic agents, as 
demonstrated for TG levels in Supplemental Table 1.

The effect of race/ethnicity on log-transformed TG lev-
els was estimated to be TG = e(3.913 + 0.002 × age – 0.00
4 × BMI + 0.003 × SSPG + 0.244 × sex [–0.257 if African 
American] OR [–0.011 if East Asian] OR [–0.097 if 
Hispanic White] OR [–0.026 if South Asian]).

Numeric values for sex are defined as ‘1’ if female and 
‘2’ if male. Non-Hispanic White race is the reference 
group. As an example, the estimated TG concentration for 
a 50-year-old African American female with a BMI of 28 
kg/m2 and an SSPG level of 175 mg/dL and her equivalent 
non-Hispanic White counterpart would be 83 and 107 mg/
dL, respectively. Alternatively, a TG concentration of 
150 mg/dL in a non-Hispanic White male would be equiv-
alent to 116 mg/dL in an African American male of similar 
age, BMI and level of insulin resistance.

Discussion

In this study, we analysed the differences in insulin resist-
ance and its relationship to hypertriglyceridaemia in 1025 
healthy individuals from five race/ethnic groups using an 
intravenous, direct measure of insulin sensitivity. After 
adjusting for factors known to affect insulin resistance 
including BMI, we found that non-Hispanic Whites and 
African Americans had a similar degree of insulin resist-
ance which was lower than that seen in their South Asian 
and East Asian counterparts. Additionally, for all five 
groups, there was a positive relationship between insulin 
sensitivity and TG levels, although for a given level of 

insulin resistance, African Americans had lower TG con-
centrations than other race/ethnic groups.

While previous studies have examined variations in 
insulin sensitivity by race/ethnicity, they have been limited 
by the usage of surrogate measures of insulin sensitivity 
and/or comparison of only two to three race/ethnic 
groups.9,14,15 The few studies that have used precise, quan-
titative measures of insulin-mediated glucose disposal 
have been carried out in considerably smaller sample sizes 
(n < 44) than the present10 because direct measurements 
are costly, time-intensive and moderately invasive.

This analysis helps to confirm some prior findings. Our 
results in South Asians are similar to those reported by 
Raji et al.24 and Laws et al.10 In the former study, the 
authors found that 12 healthy South Asians had reduced 
glucose disposal rates (4.7 ± 0.4 vs 7.5 ± 0.3 mg/kg/min, 
p < 0.0001) based on the euglycemic-hyperinsulinemic 
clamp compared to age- and BMI-matched non-Hispanic 
Whites. In the latter study, the authors showed that 22 
South Asian men and women had 60% higher SSPG levels 
based on the modified insulin suppression test than an 
equal number of men and women of European ancestry 
matched by age and BMI. The magnitude of difference in 
SSPG levels in this study was higher than ours (which was 
around 25%); however, their sample size was much smaller 
(22 vs 118 in ours). These findings are also in broad agree-
ment with studies from Kanaya et al.15 that estimated insu-
lin resistance using the homeostasis model assessment of 
insulin resistance (HOMA-IR). They reported that South 
Asian individuals had a significantly higher degree of 
insulin resistance compared to African American, Hispanic 
White and non-Hispanic White individuals when adjusted 

Table 3. SSPG by race/ethnicity (adjusted for age, sex and BMI).

Non-Hispanic White Hispanic White South Asian East Asian African American p value

151 ± 2 169 ± 7 189 ± 6a,b 188 ± 6a,b 145 ± 8 <0.01
(147, 156) (156, 182) (177, 201) (176, 199) (129, 160)  

SSPG: steady-state plasma glucose; BMI: body mass index; SE: standard error.
Data shown as mean ± SE and 95% confidence interval (in parentheses). SSPG values are given in mg/dL. Covariates in the model are evaluated at 
the following values: age, 49 years; sex, 1.4 (where sex = ‘1’ if female and ‘2’ if male); and BMI, 29.8 kg/m2. The value of p ⩽ 0.05 is considered statisti-
cally significant.
aStatistically significant difference compared to non-Hispanic White individuals.
bStatistically significant difference compared to African American individuals.

Table 4. TG level by race/ethnicity (adjusted for age, sex, SSPG and BMI).

Non-Hispanic White Hispanic White South Asian East Asian African American p value

148 ± 5 124 ± 14 131 ± 13 157 ± 13 107 ± 17a <0.01
(137, 158) (97, 152) (106, 156) (132, 182) (74, 140)  

TG: triglyceride; SSPG: steady-state plasma glucose; BMI: body mass index; SE: standard error.
Data shown as mean ± SE and 95% confidence interval (in parentheses). TG values are displayed in mg/dL; statistical analysis performed on natural-
log transformed TG levels. Covariates in the model are evaluated at the following values: age, 49 years; sex, 1.4 (where sex = ‘1’ if female and ‘2’ if 
male); SSPG, 161 mg/dL; and BMI, 29.8 kg/m2. The value of p ⩽ 0.05 is considered statistically significant.
aStatistically significant difference compared to non-Hispanic White individuals.
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for age, sex, BMI, waist circumference, smoking and alco-
hol use.

For other comparisons, however, our results may help 
arbitrate between prior results and explain discrepant find-
ings when insulin sensitivity is directly measured versus 
estimated. In particular, there has been some disagreement 
in the literature about the degree of insulin sensitivity in 
African or African American populations. In a small study 
conducted by Goedecke et al.,25 15 Black South African 
women were noted to have the same degree of peripheral 
insulin sensitivity as 15 White South African women as 
measured by the euglycemic-hyperinsulinemic clamp. 
Pisprasert et al.13 also showed that African American indi-
viduals had similar glucose disposal rates compared to 
Europeans as measured by the euglycemic-hyperinsuline-
mic clamp (which is closely correlated to the modified 
insulin suppression test26,27). Nevertheless, some studies 
have shown that surrogate estimates of insulin resistance 
may be higher in African Americans compared to their 
European counterparts. Haffner et al.14 published results 
on the difference in insulin sensitivity between non-His-
panic Whites and African Americans as measured by the 
insulin sensitivity index obtained using a frequently sam-
pled intravenous glucose test. In that study, African 
American subjects were reported to be more insulin resist-
ant than non-Hispanic White subjects after adjustments for 
age, sex and BMI. This discrepancy may reflect differ-
ences in methodology. In that vein, despite having similar 
levels of insulin sensitivity by euglycemic-hyperinsuline-
mic clamp, Pisprasert and colleagues showed that African 
Americans appeared more insulin resistant when assessed 
by insulin sensitivity index, HOMA-IR and fasting insulin 
level.13 Although our statistical power was somewhat lim-
ited, we found no difference in insulin sensitivity between 
African American and non-Hispanic White volunteers 
which, when taken in context with other available data 
from reference-based measures, suggest that caution 
should be used in broadly assessing African American 
populations as insulin resistant.

Overall, these studies highlight a broader issue of relia-
bility for the use of surrogate measures of insulin resist-
ance. In 490 non-diabetic volunteers, Yeni-Komshian 
et al.12 studied the accuracy of several surrogate measures 
of insulin resistance compared to the modified insulin sup-
pression test as a gold standard. They found that the total 
integrated insulin response to a 75 g oral glucose challenge 
(OGTT) was the most closely related to the modified insu-
lin suppression test with a Pearson’s correlation coefficient 
of 0.67, which meant that the total integrated insulin 
response to 75 g OGTT could only account for ~45% of the 
variability in true insulin resistance. Other surrogate meas-
ures of insulin sensitivity such as fasting insulin, fasting 
glucose/fasting insulin and HOMA-IR were found to have 
even lower correlation coefficients (0.61, −0.42 and 0.62, 
respectively). Consistent with this, Ingelsson and 

colleagues also found that correlations of various surrogate 
measures of insulin sensitivity based on fasting measures or 
OGTT with gold standard intravenous insulin sensitivity 
analyses are generally below 0.7.28 These observations 
clearly demonstrate the limitations of using surrogate 
measures of insulin sensitivity to study race/ethnic differ-
ences in insulin resistance.

For a given level of insulin resistance, we found that 
African Americans have lower TG levels than non-His-
panic Whites. This is consistent with results of prior popu-
lation-based studies that have shown that African American 
individuals tend to have lower TG concentrations than 
their non-Hispanic White counterparts.29,30 Sumner and 
Cowie18 also found that African Americans with insulin 
resistance defined by HOMA-IR had lower TG levels than 
comparable non-Hispanic and Hispanic Whites. Because 
of lower TG levels, African Americans were less likely to 
meet criteria for metabolic syndrome than their age-, sex- 
and BMI-matched non-Hispanic and Hispanic White 
counterparts.31 In part, this difference in TG levels has 
been hypothesized to be due to increased lipoprotein lipase 
activity.32 Despite these findings, African Americans are 
known to have higher cardiovascular risk than non-His-
panic Whites,33 raising the concerns that the criteria com-
monly used for metabolic syndrome may underestimate 
cardiovascular risk when using standardized cutoffs with-
out consideration of race/ethnicity. Quantification of the 
differences in TG concentration between race/ethnicity, as 
is done in this analysis, can help guide accurate risk esti-
mation for metabolic syndrome and subsequent cardiovas-
cular risk.

There are several limitations to this study. First, we had 
small sample sizes for a few race/ethnic groups, which 
limits our power to identify all statistically significant dif-
ferences between groups. Second, we did not have data on 
physical activity, alcohol use and waist circumference, 
which may confound the SSPG and TG differences 
between race/ethnic groups.

Conclusion

Insulin sensitivity and its relationship to TG concentration 
varies among the five examined race/ethnic groups. Non-
Hispanic Whites and African Americans have greater insu-
lin sensitivity, as assessed by a direct measure of 
insulin-mediated glucose disposal, than other race/ethnic 
groups. Furthermore, at a given level of insulin resistance, 
African Americans have lower TG concentrations than 
non-Hispanic Whites. Nevertheless, there was a signifi-
cant, positive relationship between TG and insulin resist-
ance showing that TG levels do increase with worsening 
insulin resistance in African Americans, as with other race/
ethnic groups. Understanding these differences is critical 
for assessing and mitigating cardiovascular risk, particu-
larly in high-risk race/ethnic groups.
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Introduction

Acting via their cognate receptors insulin and insulin-like 
growth factor-1 (IGF-1) respond to environmental cues 
and nutrient availability to coordinate metabolism and 
growth.1 To do this, insulin and IGF-1 may act on multiple 
tissues, including the vascular endothelium where they 
activate endothelial nitric oxide synthase (eNOS) activa-
tion of the upstream kinase Akt.2 In aorta, we have shown 
that insulin and IGF-1 stimulated vasorelaxation and acti-
vation of eNOS is blunted in obesity.2

The insulin receptor (IR) and IGF-1 receptor (IGF-1R) 
are heterodimers consisting of two extracellular α-subunits 
and two transmembrane spanning β-subunits held together 
by disulphide bonds.3 Homology between IR and IGF-1R 

is high and as a result they can heterodimerise to form 
hybrid receptors composed of one IGF-1Rαβ complex and 
one IRαβ subunit complex.4 The proportion of hybrid 
dimerisation is thought to be a function of the molar frac-
tion of each receptor in the ER.5 According to this model, 
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a marked increase in IR leads hybrids to form in prefer-
ence to IGF-1R homodimers.6 Hybrid receptors are 
thought to have a binding affinity similar to the IGF-1R, 
that is, binding IGF-1, but not insulin, with high affinity.7 
By reducing IR availability, the formation of hybrid recep-
tors has been suggested to have a negative regulatory 
effect on insulin signalling.8,9

In cross-sectional studies in humans with insulin resist-
ance of relatively short duration, increased hybrid receptor 
expression is not seen,10 whereas patients with type 2 dia-
betes have down-regulation of IR and increased expres-
sion of hybrids.11 The temporal relationship between 
expression of IR, IGF-1R and hybrids in obesity and their 
pathological correlates in the vasculature in vivo remains 
unclear. Moreover, whether IGF-1 has vasorelaxant effects 
in resistance arteries and the effect of obesity on these 
responses is also unclear. To answer these questions we 
examined (1) the temporal changes in expression of 
IGF-1R, IR and hybrids in aorta and their correlates in 
high-fat diet-induced obesity; (2) the effect of different 
pathological insults associated with obesity on IGF-1R, IR 
and hybrid expression in human endothelial cells; and (3) 
the effect of IGF-1 and insulin on resistance vessel tone 
and Akt phosphorylation and the influence of obesity on 
these responses.

Methods

Animals and animal procedures

C57BL/6J male mice were purchased from Jackson 
Laboratories and acclimatised for 7 days before starting 
experimental procedures. Mice were maintained in a tem-
perature and humidity-controlled environment on a 12-h 
light:dark cycle. Male mice were studied in all experi-
ments which were conducted in accordance with accepted 
standards of humane animal care under UK Home Office 
Project licence No. P144DD0D6.

Diet-induced obesity

Mice were rendered obese by placing them on a 60% high-
fat diet (HF; diet D12492, Research Diets Inc. New 
Brunswick, NJ, USA). Age-matched littermate controls 

were placed on a 10% low-fat diet (LF; diet D12450B, 
Research Diets Inc. New Brunswick, NJ, USA). All mice 
were fed standard chow [Special Diet Services, CRM 
P(PB), Dietex International] until reaching 6 weeks of age, 
at which point diets were switched to either HF or LF for 
2, 5 or 16 weeks.

In vivo examination of glucose homeostasis

In vivo metabolic testing was performed as previously 
described;12,13 for glucose tolerance tests (GTT), mice 
were fasted for 6 h, followed by intraperitoneal (IP) injec-
tion of 2 mg/kg glucose after which blood glucose was 
determined at 30-min intervals by tail vein sampling using 
a portable glucometer (Accu-chek Aviva; Roche 
Diagnostics, Burgess Hill, UK). For analyses of plasma 
insulin and IGF-1, blood was sampled at euthanasia from 
the inferior vena cava. Blood was sampled at euthanasia 
from the inferior vena cava. Plasma insulin and IGF-1 
were measured using ultrasensitive mouse enzyme-linked 
immunosorbent assay (ELISA) kits (CrystalChem, 
Downers Grove, IL and R&D Systems, Bio-Techne, MN) 
as previously described.12

Quantification of IRs and IGF-1Rs

Mice were euthanised at 2, 5 or 16 weeks after feeding and 
aortae harvested and snap-frozen. Tissue was processed 
for analysis by Western blotting to examine changes in 
receptor protein expression. Samples were mechanically 
lysed in cell extraction buffer (Invitrogen, Carlsbad, CA, 
USA) with inhibitors, using a TissueLyser (QIAGEN, 
Dusseldorf, Germany). Protein was quantified by the 
bicinchoninic acid assay (BCA)  (Sigma-Aldrich, St. 
Louis, MO, USA). Twenty micrograms of protein  
was resolved on a 4%–12% Bis–Tris gel (Bio-Rad, 
Hertfordshire, UK) and transferred to nitrocellulose mem-
branes. Membranes were probed with antibodies diluted in 
5% bovine serum albumin (BSA); 1:1000 insulin receptor-
beta (clone 4b8), 1:1000 IGF-1 receptor-beta (clone 
D23H3) and 1:20,000 beta actin (Cell Signaling, MA, 
USA), before incubation with appropriate secondary 
horseradish peroxidase (HRP)-conjugated antibody (Dako, 
Glostrup, Denmark). All antibodies are summarised in 

Table 1. Antibody details.

Peptide/protein target Name of antibody Manufacturer 
catalogue #

Species raised, 
monoclonal or polyclonal

Dilution 
used

IR-β Insulin receptor beta 4b8 Cell Signaling, 3025 Rabbit, monoclonal 1:1000
IGF-1Rβ IGF-1 receptor beta, d23h3 Cell Signaling, 9750 Rabbit, monoclonal 1:1000
β-actin β-actin (13E5) Cell Signaling, 4970 Rabbit, monoclonal 1:20 000
Phospho-Akt (Ser473) Phospho-Akt (Ser473) 

(D9E) XP
Cell Signaling, 4060 Rabbit, monoclonal 1:2000

Akt Akt (pan)(11E7) Cell Signaling, 4685 Rabbit, monoclonal 1:1000
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Table 1. Blots were visualised with Immobilon Western 
Chemiluminescence HRP Substrate (Merck Millipore, 
Hertfordshire, UK) and imaged with Syngene chemilumi-
nescence imaging system (SynGene, Cambridge, UK).

Quantification of hybrid receptors

Hybrid receptor expression was studied by immunoprecipi-
tation and Western blot analysis. Immunoprecipitation: total 
protein was combined with 30 µL of protein G agarose beads 
(Roche Diagnostic, Switzerland), 300 µL buffer (100 mM 
HEPES, pH 7.8, 100 mM NaCl, 10 mM MgSO4, 0.02% 
Tween-20) and 1:100 dilution of IGF-1 receptor antibody 
(D23H3). Ag–Ab immune complexes were allowed to form 
over 3 h at 4°C, after which they were collected using brief 
centrifugation. Precipitates were washed gently three times 
in phosphate-buffered saline (PBS)–0.02% Tween-20 before 
elution with sodium dodecyl sulphate (SDS) buffer. Western 
blotting: Samples were resolved by sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE) and trans-
ferred to nitrocellulose membranes. Membranes were probed 
with IR-β antibody; 1:1000 (4b8), followed by appropriate 
secondary HRP-conjugated antibody to visualise IR/IGF-1R 
hybrids. Membranes were re-probed with IGF-1R-β anti-
body to allow hybrid receptors to be reported as relative lev-
els compared with total IGF-1R protein.

IR and IGF-1R gene expression

Quantitative real-time polymerase chain reaction (PCR) 
was used to measure mRNA levels of IR and IGF-1Rs. 
mRNA from aorta was isolated and purified using the 
RNeasy mini kit (QIAGEN, Dusseldorf, Germany) as per 
the manufacturer’s protocol. Reverse transcription was per-
formed using iScript cDNA synthesis kit (Bio-Rad, 
Hertfordshire, UK). Quantitative PCR was then used to 
determine IR and IGF-1R mRNA expression using specific 
TaqMan assays (Invitrogen, IR; Mm01211875_m1, IGF-1R; 
Mm00802831_m1). Receptor expression was calculated 
relative to the average of two housekeeping genes – TATA 
box–binding protein (TBP; Mm01277042_m1) and CyclinB 
(Mm03053893_gH) – using the formula 2−ΔCt.

Insulin and IGF-1 stimulated Akt 
phosphorylation in vivo

Mice were injected subcutaneously with either vehicle, 
native human insulin (Novo Nordisk, Malov, Denmark) or 
recombinant human IGF-1 (Ipsen, Slough, UK). Dosage 
was calculated based on the average weight of all lean 
mice (assuming blood volume does not significantly alter 
in obese mice). Plasma levels of human IGF-1 and human 
insulin in the mice were measured using ELISAs (insulin; 
Novo Nordisk, Malov, Denmark. IGF-1; Immunodiagnostic 

Systems, Tyne & Wear, UK) as described previously,14 in 
order to confirm equivalent dosing levels between HF and 
LF mice. After 15 min stimulation, mice were euthanised 
and the aorta rapidly harvested and snap-frozen. Twenty 
micrograms of protein was processed for Western blotting. 
Nitrocellulose membranes were probed with antibodies 
diluted in 5% BSA; 1:1000 Akt, 1:2000 phosphorylated 
Akt (Ser473) and 1:20,000 beta actin (Cell Signaling).

In vitro assessment of receptor and hybrid 
expression in human umbilical vein endothelial 
cells

Cryopreserved human umbilical vein endothelial cells 
(HUVECs) were purchased from Promocell (Stourbridge, 
UK) and maintained in culture in endothelial cell growth 
medium at 37°C in a humidified atmosphere with 5% CO2. 
At ~70% confluency, cells were treated with the follow-
ing: 100 nM human recombinant insulin (Sigma-Aldrich, 
Dorset, UK), 100 nM human recombinant IGF-1 (GroPep, 
Adelaide, Australia), 10 ng/mL TNF-α (PeproTech, 
London, UK) 1 µM angiotensin II (Sigma-Aldrich, Dorset, 
UK), 50 µM hydrogen peroxide (H2O2; Sigma-Aldrich, 
Dorset, UK), 25 mM glucose and/or 10 nM insulin (Sigma-
Aldrich, Dorset, UK) for 24 h in low-serum (0.5%) 
medium. Whole-cell lysates were prepared in cell extrac-
tion buffer and samples processed for Western blot analy-
sis of IR, IGF-1R and hybrid receptors.

Resistance vessel vasomotor function in 
response to insulin and IGF-1

Two-millimetre segments of first-order mesenteric arteries 
were harvested from LT HF and LF mice and mounted in a 
wire myograph (Danish Myo Technology A/S, Aarhus, 
Denmark) containing physiological buffer (mM): KCl 7.4, 
NaCl 118, NaHCO3 15, KH2PO4 1.2, MgSO4 1.2, glucose 
11, CaCl2 2.5, EDTA 0.023 at 37°C, 5% CO2 and 95% O2. 
Vessels were equilibrated at a resting lumen diameter of 
0.9 × L100 (L100 represents vessel diameter under pas-
sive transmural pressure of 100 mmHg) in buffer for 
30 min. Three potassium-induced constrictions were per-
formed using high potassium buffer and vessels constrict-
ing less than 1 mN were excluded from the study. Vessels 
were pre-constricted with phenylephrine, at a dose yield-
ing approximately 40% constriction obtained with high 
potassium buffer, and left to stabilise for 10 min. Relaxation 
to cumulative addition of either insulin (0.001 nM/1 pM to 
1 µM) or IGF-1 (0.001 nM to 10 nM) was assessed in pre-
constricted vessels. A time-matched control recording was 
also performed following the same protocol, without the 
addition of insulin or IGF-1. The contractile force of a ves-
sel segment was recorded using PowerLab 4/25–LabChart7 
acquisition system (ADInstruments, Oxford, UK).
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Ex vivo analysis of insulin and IGF- 1 induced 
Akt phosphorylation in resistance arteries

First-order mesenteric artery segments of 5 mm length 
were placed into Krebs Ringer solution and stimulated 
with insulin or IGF-1 at different concentrations (0.001 nM 
to 1 µM) for 15 min at 37°C. Stimulated vessels were snap-
frozen, then lysed and sonicated. Samples were analysed 
by SDS-PAGE and Western blotting.

Statistical methods

Data were analysed using GraphPad Prism software (ver-
sion 7). For animal studies, one-way analysis of variance 
(ANOVA) was used to compare the mean value across 
groups, followed by Tukey’s multiple comparisons test. 
Where differences between two groups were analysed, an 
unpaired t-test was used with Welch’s correction. To study 
differences in vitro, a paired two-way t-test was utilised.

The results are given as mean ± standard error of the 
mean (SEM). In this study, differences with a p value  
of <0.05 were considered statistically significant. 
Multivariate and univariate analysis: Uni- and multi-
variate linear regression analysis was performed using 
SPSS version 21 (IBM Corporation, Armonk, NY) to 
determine the association between receptor abundance 
and selected covariates. Standardised regression (beta) 
coefficients are presented, with * denoting statistical 
significance at p < 0.05.

Results

Progressive decline in insulin and IGF-1 
sensitivity in obesity

We fed mice a HF, obesogenic diet for 2, 5 or 16 weeks; 
this led to progressive metabolic impairment in compari-
son to LF fed controls (summarised in Table 2).

IGF-1R, IR and IGF-1R/IR hybrid receptor 
expression in aorta during obesity

We studied changes in IR, IGF-1R and hybrid receptor 
expression in aortic lysates from mice after 2, 5 and 
16 weeks of HF and LF. In tissue samples, IR was observed 
as a double band migrating at 80–100 kDa. We observed 
IR as a single or double band in tissue but not cell lysates. 
We suggest this is due to the varying degrees of IR glyco-
sylation in different cell types and tissues, resulting in two 
migrating populations of IR. We did not observe any dis-
cernible difference in the two populations of IR when 
comparing HF and LF. The level of hybrid receptors was 
studied by immunoprecipitating IGF-1R and detecting IR 
in the hybrid receptor by Western blot. The relative level of 
IR compared to total IGF-1R was determined. The effect 
of an obesogenic diet was studied over time. After 2 weeks 
feeding, IR, IGF-1R and hybrid receptor protein expres-
sion was unchanged (Figure 1). After 5 weeks of HF, IR 
expression in aorta was unchanged (Figure 1(a)), whereas 
IGF-1R expression had declined by 30% (Figure 1(b)) and 
hybrid receptor expression increased by 38% (Figure 1(c)). 
After 16 weeks of HF, IR expression had declined by 24% 
(Figure 1(a)), IGF-1R expression had declined further by 
34% (Figure 1(b)) and hybrid receptor expression increased 
by 62% (Figure 1(c)).

To determine whether the reduction in receptor expres-
sion was due to transcriptional changes, real-time PCR 
was performed on RNA isolated from aorta of mice after 
16 weeks of feeding. No changes were observed in IR 
(Figure 1(d)) or IGF-1R (Figure 1(e)) relative mRNA 
expression between HF and LF fed mice.

Univariate correlates of hybrid receptor expression 
were plasma insulin, plasma IGF-1, fasting glucose, body 
weight, dietary fat content and duration of diet, all p < 0.05. 
In multivariate analysis, independent predictors of hybrid 
expression were dietary fat content, duration of diet inges-
tion and plasma IGF-1, all p < 0.05 (Table 3).

Table 2. Metabolic effects of high-fat (HF) calorie diet for 2, 5 and 16 weeks.

2 weeks 5 weeks 16 weeks

 LF HF LF HF LF HF

Weight (g) 26.0 ± 0.4 29.2 ± 0.6a 25.4 ± 0.5 30.8 ± 0.5a 29.8 ± 0.4 50.6 ± 0.6a

Fasting glucose (mmol/L) 7.7 ± 0.3 9.7 ± 0.3b 9.3 ± 0.3 13.1 ± 0.3a 8.6 ± 0.2 12.7 ± 0.5a

GTT-AUC (mmol/L × time) 19.8 ± 1.1 38.3 ± 2.0a 11.2 ± 1.2 23.6 ± 1.5a 10.1 ± 0.8 46.7 ± 3.1a

Plasma insulin (ng/mL) 0.7 ± 0.2 1.8 ± 0.5c 0.6 ± 0.1 1.8 ± 0.2a 0.8 ± 0.06 5.9 ± 0.4a

Plasma IGF-1 (ng/mL) 273 ± 21.9 281.9 ± 33.6 230 ± 7.7 277 ± 10.6b 219 ± 14 408 ± 21.6a

‘GTT-AUC denotes GTT-Area Under Curve LF’ denotes lean diet, n = 10–25 in each group.
Data are reported as means ± SEM.
ap < 0.0001.
bp < 0.001.
cp < 0.05 compared to the respective control (LF) group.
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Figure 1. Temporal effects of obesity on IR, IGF-1R and hybrid receptor expression in aorta of low-fat (LF) and high-fat (HF) diet 
fed mice. Data show changes in (a) IR, (b) IGF-1R and (c) hybrid receptor protein at 2, 5 and 16 weeks of feeding. Representative 
Western blot images are shown with densitometry (a, b and c, n = 10–25 in each group). Relative (d) IR and (e) IGF-1R mRNA is 
shown in LF and HF mouse aortae at 16 weeks feeding (n = 6 in each group). Analysis was performed between gels, and samples 
were normalised to a single control whole cell lysate which was loaded on all gels. All data are given as mean values ± SEM.
**p < 0.01, ***p < 0.001, ****p < 0.0001 versus lean group.
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IGF-1R, IR and IGF-1R/IR hybrid expression in 
vitro in response to different components of the 
obesity phenotype

We cultured HUVECs in conditions aiming to recapitulate 
different components of the obesity phenotype including 
elevated: insulin, IGF-1, glucose with and without insulin, 
angiotensin II, hydrogen peroxide and TNF-α for 24 h. 
Only insulin and IGF-1 reduced expression of their respec-
tive receptors despite this hybrid receptor expression 
remained unchanged (Figure 2).

Temporal effects of obesity on IGF-1 and 
insulin stimulated Akt phosphorylation

To examine the temporal effect of obesity on insulin and 
IGF-1-mediated phosphorylation of the key signalling 
kinase Akt, we performed in vivo administration of either 
insulin or IGF-1 to HF and LF fed mice after 2, 5 and 
16 weeks.

To determine the optimum dose of IGF-1, we first 
performed a study in lean mice to examine the effect of 
equimolar and equipotent (as determined by blood glu-
cose lowering ability) doses of IGF-1 and insulin on aor-
tic Akt phosphorylation. When equimolar concentrations 
of insulin (4.5 nmol/kg) or IGF-1 (4.5 nmol/kg) were 
administered, insulin led to a greater decrement in blood 
glucose and greater increment in phosphorylation of Akt 
in aorta than IGF-1 (Figure 3(a) and (b)). An IGF-1 
dose of 90 nmol/kg stimulated similar blood glucose 
lowering and Akt phosphorylation as 4.5 nmol/kg insu-
lin. Therefore, in subsequent studies, we used equipotent 
doses; insulin at 4.5 nmol/kg and IGF-1 at 90 nmol/kg. 
To ensure that plasma exposure levels would be compa-
rable between LF and HF mice, doses for all mice were 
calculated based on the average body weight of the LF 
mice. Plasma exposure levels of human insulin and 
IGF-1 was assessed with specific ELISAs for insulin and 

IGF-1 and we found comparable levels between the LF 
and HF groups.

After 2 weeks HF, despite no change in receptor expres-
sion, both insulin and IGF-1-mediated Akt phosphoryla-
tion were blunted (Figure 3(e)). After 5 weeks, HF both 
insulin and IGF-1-mediated Akt phosphorylation were 
blunted (Figure 3(f)). By 16 weeks, however, while insu-
lin-mediated Akt phosphorylation remained blunted, 
IGF-1 mediated Akt phosphorylation was similar in LF 
and HF fed mice (Figure 3(g)), possibly reflecting an 
increase in hybrid receptor expression.

Resistance vessel relaxation and Akt 
phosphorylation in response to insulin and IGF-1

We previously demonstrated that 8 weeks HF led to blunt-
ing of both insulin and IGF-1-mediated vasorelaxation of 
the aorta;2 however, this study did not examine the effect 
of obesity on resistance vessel function. Here, we show 
that both insulin and IGF-1 led to vasorelaxation of first-
order mesenteric arteries (Figure 4(a) to (c)). IGF-1, how-
ever, was more potent than insulin (Figure 4(d) and (e)). 
HF resulted in blunted insulin-mediated vasorelaxation 
(Figure 4(f)) but IGF-1-mediated responses were unaf-
fected (Figure 4(g)). A dose-dependent increase in phos-
phorylation of Akt was observed with increasing 
concentrations of insulin and IGF-1 (Figure 4(h) and (i)); 
however, IGF-1 treatment led to a greater maximal 
response (Figure 4(j) and (k)). HF-blunted insulin-medi-
ated Akt phosphorylation in first-order mesenteric arteries 
(Figure 4(h)), but IGF-1-mediated Akt phosphorylation 
was unaffected by HF (Figure 4(i)).

Discussion

This report describes a number of novel findings of rele-
vance to our understanding of obesity, metabolic disease 
and the insulin/IGF-1 system, including (1) IR/IGF-1R 

Table 3. Independent predictors of hybrid receptor (HR), insulin receptor (IR) and IGF-1 receptor (IGF-1R) expression in mouse 
aorta.

Covariate Univariate correlation with Multivariate correlation witha

HR IR IGF-1R HR IR IGF-1R

Dietary fat (%) 0.502* −0.119 −0.161 0.325* −0.002 −0.007
Diet duration (weeks) 0.348* −0.386* −0.556* 0.304* −0.411* −0.581*
Body mass (g) 0.585* −0.168 −0.315* −0.231 0.185 0.225
Capillary glucose (mmol/L) 0.319* −0.538* −0.573* −0.035 −0.654* −0.61*
Plasma insulin 0.572* −0.137 −0.242* 0.282 −0.18 −0.136
Plasma IGF-1 0.536* 0.17 −0.024 0.276* 0.516* 0.3*

IGF-1: insulin-like growth factor-1.
β coefficients presented.
aPresented multivariate correlation coefficients account for all five other listed covariates.
*p < 0.05.
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hybrid protein level in aorta does not appear to be a pri-
mary function of mRNA IR and IGF-1R levels; (2) inde-
pendent in vivo correlates of hybrid expression are plasma 
IGF-1, HF and duration of HF feeding period; (3) IGF-1 is 
a more potent activator of Akt and vasorelaxation in resist-
ance vessels than insulin, whereas we have shown previ-
ously that the opposite is true in larger conduit vessels; 
and (4) after 16 weeks of HF diet, IGF-1-mediated responses 
in resistance vessels and conduit vessels are preserved, 
whereas insulin-induced responses are blunted.

Hybrid receptor expression does not appear to 
be simply dependent on the molar fraction of 
each receptor

Energy and nutrient homeostasis in mammals requires 
tight regulation and integration of multiple systems, which 
during periods of cellular and whole organism stress, cou-
ple nutrient delivery to energy storage, cell growth and tis-
sue repair.15 Integral to nutrient homeostasis is the insulin/
IGF-1 system, the development and evolution of which 

Figure 2. Effects of supplementation of obesity-related modulators on receptor expression in human umbilical vein endothelial 
cells in vitro. Data show effects of physiological modulators on (a) IR, (b) IGF-1R and (c) hybrid receptor protein expression. 
Representative Western blot images are shown with densitometry. All data are given as mean values ± SEM. a: basal (0.5% low-
serum medium); b: insulin (100 nM); c: TNF-α (10 ng/mL); d: angiotensin 2 (1 µM); e: H2O2 (50 µM); f: glucose (25 mM); g: glucose 
(25 mM) + insulin (10 nM); h: IGF-1 (100 nM).
*p < 0.05, **p < 0.01 versus control (basal) group (n  = 6 for each).

08_DVR802550.indd   166 15/03/2019   12:04:27 PM



Mughal et al. 167

Figure 3. Temporal effects of high-fat (HF) diet-induced obesity on insulin and IGF-1 stimulated Akt phosphorylation compared 
to lean low-fat (LF) diet fed mice. Reduction in blood glucose is shown in response to insulin (4.5 nmol/kg) and IGF-1 at equimolar 
(4.5 nmol/kg) and equipotent (90 nmol/kg) doses in lean mice (a). Phosphorylation of Akt in the aorta of lean mice in response to 
insulin (4.5 nmol/kg) and equipotent and equimolar doses of IGF-1 (b). Data show level of subcutaneously injected human insulin 
(c) and IGF-1 (d) in plasma of LF and HF diet fed mice. Differences in insulin (4.5 nmol/kg) and IGF-1 (90 nmol/kg) stimulated 
phosphorylation of Akt in LF and HF mouse aortae are shown at 2 weeks (e), 5 weeks (f) and 16 weeks (g) of feeding. Representative 
Western blots and densitometry are shown. All data are given as mean values ± SEM (n = 6–8 for each group). Bars represent 
comparisons made between HF and lean groups.
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 versus lean vehicle group.
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Figure 4. Effects of high fat (HF) diet–induced obesity on mesenteric artery function in response to insulin and IGF-1 compared to 
lean low fat (LF) diet fed mice. (a) Data show a representative recording of dose-dependent insulin-induced vasorelaxation followed 
by a time-matched control showing stability of pre-constriction over time. Data show (b) insulin-induced and (c) IGF-1-induced 
relaxation in pre-constricted mesenteric arteries (first order) taken from LF and HF mice after 16 weeks feeding. Differences 
in vascular sensitivity to insulin and IGF-1 in (d) LF and (e) HF mice are shown and maximal relaxation achieved with (f) insulin 
and (g) IGF-1. (h) Insulin and (i) IGF-1-mediated phosphorylation of Akt in LF and HF mesenteric arteries is shown with maximal 
phosphorylation shown in (i) and (k). All data are given as mean values ± SEM.
*p < 0.05, HF versus LF group (n = 3–7 for each group).
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occurred before the relatively unusual environmental cir-
cumstances of caloric excess experienced by 21st-century 
humans.16 As a result, the insulin/IGF-1 system is unable 
to effectively adapt to the challenge posed by chronic 
calorie excess and gradually deteriorates giving rise 
to insulin-resistant type 2 diabetes mellitus and its lethal 
complications, many of which involve the cardiovascular 
system.17

A hallmark of type 2 diabetes is the increased expres-
sion of IR/IGF-1R hybrids which are thought to restrict 
insulin signalling in favour of IGF-1,5 a scenario we,18,19 
and others, have demonstrated may be present in the 
endothelium20 and vasculature.21 Understanding how 
hybrid receptors are regulated and activated in the vascula-
ture is hence of importance to our understanding of obe-
sity-related perturbation of insulin signalling and vascular 
dysfunction. In this study, and consistent with cross-sec-
tional studies in humans,10 increased hybrid receptor 
expression was preceded by insulin (and IGF-1) resist-
ance. We also show that expression of hybrid receptors is 
closely linked to the duration of high-fat diet ingestion and 
plasma IGF-1 level. In contrast to elegant studies from 
Federici et al.,22 we did not demonstrate independent cor-
relations between hybrid receptor expression and blood 
glucose or insulin concentration,23 rather IGF-1 concentra-
tion more closely correlated with hybrid expression. It is 
possible that this is due to the presence of obesity rather 
than the primary hyperinsulinaemia described by Federici 
et al.23 An additional explanation could be the use of dif-
ferent tissues – muscle samples as studied by Federici et al 
may show more sensitivity to hybrid formation following 
perturbations in insulin and glucose, whereas vascular tis-
sue as in this study may be more sensitive to changes in 
IGF-1 levels. After 16 weeks of HF, we observed no change 
in receptor mRNA levels yet found that IR and IGF-1R 
protein decreased in obese mice. Despite this reduction in 
total receptor level, the relative expression of hybrid recep-
tors increased. This suggests that regulation of IR and 
IGF-1R occurs at the translational level or it could be spec-
ulated that the internalisation/degradation pathways of the 
receptors are distinct from hybrid receptors and they are 
more readily influenced by hormone exposure levels.

Insulin and IGF-1 in resistance vessel function

We previously showed that obesity leads to resistance to 
both IGF-1 and insulin-mediated activation of eNOS and 
relaxation of the aorta.2 Studies in humans have shown that 
IGF-1 increases forearm blood flow consistent with an 
effect on resistance vessels.24 McCallum et al.25 showed 
that IGF-1-mediated vasodilatation of aorta is blunted in 
hypertensive rats and Hasdai et al.26 showed that arteriolar 
vasorelaxation to IGF-1 is attenuated in experimental 
hypercholesterolaemia. The effect of obesity on insulin 
and IGF-1-mediated responses in resistance vessels has 

been unclear. Here, we show that IGF-1 relaxes resistance 
vessels and is more potent than insulin. We also show the 
intriguing finding that obesity blunts insulin-mediated 
resistance vessel relaxation and Akt phosphorylation, 
while IGF-1-mediated vasorelaxation and Akt phospho-
rylation remained intact. These findings reveal a poten-
tially important divergence between insulin and IGF-1 
responses in resistance vessels with preservation of IGF-1 
responses, when we previously showed that obesity leads 
to IGF-1 resistance in aorta.2

Study limitations

A number of limitations should be discussed: we used the 
semi-quantitative approach of expression levels of recep-
tors to estimate receptor numbers so we cannot comment 
on the exact numerical relationship between IR and 
IGF-1R in relation to hybrid receptor formation. In resist-
ance vessels, we were unable to quantify receptor expres-
sion due to limited amounts of protein available; it would 
be of interest in the future to examine receptor expression 
in resistance vessels as obesity progresses.

Conclusion
We have provided a number of insights into changes in the 
IR/IGF-1R/hybrid receptor system as obesity progresses, 
showing that after long-term obesity, IGF-1-mediated Akt 
phosphorylation is preserved in aorta and resistance ves-
sels. Moreover, we show that IGF-1 is a more potent vaso-
dilator of resistance vessels than insulin, and after 16 weeks 
of high-fat diet, while insulin-mediated resistance vessel 
function is blunted, IGF-1 responses are maintained. These 
data raise the intriguing possibility that using IGF-1 or 
manipulating hybrid expression may be an approach to 
treat obesity-related vascular dysfunction, a possibility 
that warrants future work.
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Baseline fasting plasma insulin levels predict 
risk for major adverse cardiovascular 
events among patients with diabetes and 
high-risk vascular disease: Insights from  
the ACCELERATE trial
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Abstract
Background: Despite optimal treatment, type II diabetes mellitus remains associated with an increased risk for future 
cardiovascular events. We sought to determine the association between baseline fasting plasma insulin levels and major 
adverse cardiovascular outcomes in patients with type II diabetes mellitus and high-risk vascular disease enrolled in 
the ACCELERATE (Assessment of Clinical Effects of Cholesteryl Ester Transfer Protein Inhibition with Evacetrapib in 
Patients at a High Risk for Vascular Outcomes) trial.
Methods: We included all patients with type II diabetes mellitus who had a central laboratory measured fasting plasma 
insulin level drawn at baseline as part of the study protocol. Hazard ratios were generated for the risk of major adverse 
cardiovascular outcomes (composite of cardiovascular death, non-fatal myocardial infarction, stroke, hospitalization for 
unstable angina and coronary revascularization) with increasing quartile of baseline fasting plasma insulin level. We then 
performed a multivariable regression adjusting for significant baseline characteristics.
Results: Among 12,092 patients in ACCELERATE, 2042 patients with type II diabetes mellitus had a baseline fasting 
plasma insulin level drawn. Median follow-up was 28 months. The study population had a mean age of 66.6 years, 79.2% 
male and 96.2% had established coronary artery disease. During follow-up, major adverse cardiovascular outcomes 
occurred in 238 patients (11.6%); of these events, 177 were coronary revascularization (8.7%). We observed a statistically 
significant relationship between rates of revascularization and rising quartile of baseline fasting plasma insulin level which 
was not noted for the other individual components of major adverse cardiovascular outcomes. Patients with type II 
diabetes mellitus who underwent revascularization were noted to have significantly higher baseline fasting plasma insulin 
levels (27.7 vs 21.4 mU/L, p-value = 0.009) although baseline haemoglobin A1c (6.63% vs 6.55%), body mass index (31.5 
vs 31.1 kg/m2) and medical therapy were otherwise similar to the group not undergoing revascularization. Following 
multivariable regression adjusting for significant characteristics including exposure to evacetrapib, the log of baseline 
fasting plasma insulin level was found to be an independent predictor for major adverse cardiovascular outcomes (hazard 
ratio = 1.36, 95% confidence interval = 1.09–1.69, p-value = 0.007); this was driven by need for future revascularization 
(hazard ratio = 1.56, 95% confidence interval = 1.21–2.00, p-value = 0.001).
Conclusion: In a contemporary population of patients with type II diabetes mellitus and high-risk vascular disease on 
optimum medical therapy, baseline hyperinsulinaemia was an independent predictor for major adverse cardiovascular 
outcomes and need of future coronary revascularization. These results suggest a pathophysiological link between 
hyperinsulinaemia and progression of atherosclerotic vascular disease among diabetics.
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Introduction

Type II diabetes mellitus (T2DM) is highly prevalent and 
poses a significant and rising burden on the health care 
system.1 Numerous studies have described an association 
between T2DM and coronary artery disease (CAD).2 
Although several new agents have recently been proven to 
reduce cardiovascular risk in T2DM,3–5 the residual risk of 
developing atherosclerotic cardiovascular events despite 
optimal treatment remains significantly higher in this pop-
ulation when compared to non-diabetics.6,7 While a large 
proportion of the accentuated risk in patients with T2DM 
is attributable to the presence of traditional risk factors, 
further identification of modulating novel risk factors is 
crucial to developing novel therapeutic interventions.

Previous studies have examined the association between 
hyperinsulinaemia and incidence of CAD in a variety of 
clinical settings, although primarily in healthy individuals 
without T2DM or prior history of established CAD.8–13 A 
majority of these studies are now of historic importance as 
subjects were not optimally medically managed with cur-
rent guideline-recommended therapies. Consequently, the 
association between baseline fasting insulin levels and 
residual risk in high-risk patients with T2DM has not been 
adequately investigated.

The Assessment of Clinical Effects of Cholesteryl 
Ester Transfer Protein Inhibition with Evacetrapib in 
Patients at a High Risk for Vascular Outcomes (ACCE 
LERATE) trial was a randomized, double-blinded pla-
cebo-controlled trial investigating the use of evacetrapib, a 
cholesteryl ester transfer protein inhibitor, on patients 
with high-risk vascular disease.14 We examined the asso-
ciation between baseline fasting plasma insulin levels and 
major adverse cardiovascular outcomes (MACE) in 
patients with T2DM and high-risk vascular disease 
enrolled in the ACCELERATE trial.

Methods

The trial design of ACCELERATE has previously been 
described.15 Briefly, approximately 12,000 patients with 
high-risk vascular disease, including those with recent 
acute coronary syndrome, peripheral arterial disease, cer-
ebrovascular disease and DM with established history of 
CAD, were randomized in a 1:1 fashion to evacetrapib 
130 mg versus placebo. The trial was event-driven with a 
primary endpoint of MACE which included cardiovascu-
lar death, myocardial infarction, cerebrovascular acci-
dent, coronary revascularization or hospitalization for 
unstable angina all of which were adjudicated by a 
blinded Clinical Endpoints Committee. Due to clinical 
futility, the trial was terminated prematurely after accrual 
of 1363 of the planned 1670 primary endpoint events and 
a median of 26 months study drug exposure. Follow-up 
was comprehensive and the end of study visit was com-
pleted by 98.8% of patients.

Baseline fasting plasma insulin level was collected as 
part of the study protocol at randomly selected study sites 
identified at study initiation. We performed a subgroup 
analysis among those who had a central laboratory meas-
ured fasting plasma insulin level collected at baseline and 
were known to be diabetic. Patients with type 1 diabetes 
mellitus and insulin-dependent diabetes mellitus were 
excluded from this analysis. Baseline patient characteris-
tics, medications and laboratory parameters were com-
piled. Percentages and means ± standard deviations were 
computed for categorical and continuous variables, respec-
tively. Categorical variables were compared using the chi-
square test or Fisher exact tests, when appropriate, while 
continuous variables were analysed using the two-tailed 
Student’s t test or the Mann–Whitney U test, when appro-
priate. Kaplan–Meier methods generated survival curves 
to graphically demonstrate the risk with increasing quartile 
in baseline fasting plasma insulin. Multivariable Cox’s 
proportional hazard models with stepwise selection identi-
fied significant factors associated with each endpoint. 
Hazard ratios (HRs) with 95% confidence intervals (CI) 
are reported for the log of fasting plasma insulin after 
adjustment for other clinical covariates associated with the 
endpoint. A p-value ⩽ 0.05 was considered statistically 
significant.

Results

A total of 12,092 patients were enrolled in ACCELERATE. 
As described in Figure 1, 8236 patients had diabetes mel-
litus with 166 patients excluded due to insulin dependence; 
of the remaining patients, 2042 patients with T2DM had a 
baseline fasting plasma insulin level drawn. The overall 
median follow-up was 28 months. The average age was 
66.6 years, 79.2% were male and 96.2% had established 
CAD. At baseline, 85.2% of patients were taking an aspi-
rin, 95.4% a statin, 79.1% an angiotensin-converting 
enzyme inhibitor or angiotensin-receptor II antagonist, 
and 75.3% a β-blocker. Overall, 83.6% of patients were 
taking an oral hypoglycaemic agent. At study initiation, 
baseline low-density lipoprotein cholesterol (LDL-C) was 
80.6 mg/dL, high-density lipoprotein cholesterol (HDL-C) 
was 44.6 mg/dL, triglycerides were 150.5 mg/dL and hae-
moglobin A1c was 6.6%.

During follow-up, MACE occurred in 238 patients 
(11.6%); among these events, 177 (8.7%) were coronary 
revascularization. As seen in Figure 2, Kaplan–Meier 
event curves demonstrated an increase in MACE by quar-
tiles of baseline fasting plasma insulin level which 
appeared to be predominantly driven by need for revascu-
larization. Baseline characteristics of patients with and 
without revascularization following randomization are 
shown in Table 1. Patients with T2DM who underwent 
revascularization had a 29.4% higher baseline fasting 
plasma insulin level (27.7 vs 21.4 mU/L, p-value = 0.009) 
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and were younger (65.2 vs 66.7 years, p-value = 0.020), 
more likely to be current smokers (16.9% vs 12.0%, 
p-value = 0.06), have undergone prior percutaneous coro-
nary intervention (83.6% vs 73.5%, p-value = 0.004) and 
have a higher baseline LDL-C (83.9 vs 80.3 mg/dL, 
p-value = 0.03). The baseline haemoglobin A1c (6.63% vs 
6.55%), body mass index (31.5 vs 31.1 kg/m2), baseline 
medical therapy and remainder of characteristics were 
similar regardless of need for revascularization during 
follow-up. Table 2 demonstrates that while there was no 
difference in use of any oral anti-glycaemic medication 
(81.9% vs 83.8%, p = 0.529), those who underwent revas-
cularization were significantly less likely to be prescribed 
a thiazolidinedione (2.3% vs 6.2%, p-value = 0.032).

Multivariable regression adjusting for baseline haemo-
globin A1c, fasting glucose, log of triglycerides, LDL-C, 
body mass index, age, race, current smoking, prior percu-
taneous coronary intervention and receipt of evacetrapib 
noted log of baseline fasting plasma insulin level to be an 
independent predictor for overall MACE (HR = 1.36, 95% 
CI = 1.09–1.69, p-value = 0.007) and coronary revasculari-
zation (HR = 1.56, 95% CI = 1.21–2.00, p-value = 0.001).

Discussion

The burden of cardiovascular disease among patients with 
T2DM remains substantial.16 Although treatment with 
multiple new agents has proven to improve cardiovascular 
outcomes, further mechanistic insight into the modulators 
of risk in this high-risk population remains a priority. This 
study demonstrates that among a contemporary patient 

population with T2DM and known high-risk vascular dis-
ease on appropriate guideline-directed medical therapy, 
baseline fasting insulin level was an independent predictor 
for MACE mainly mediated through the clinical outcome 
of need of revascularization. Our results suggest a patho-
physiological link between baseline insulin levels and 
future risk for atherosclerotic vascular disease progression 
among patients with T2DM.

Although the association between hyperinsulinaemia 
and cardiovascular disease has been previously investi-
gated in several patient populations with varied results, 
minimal contemporary data, if any, exist regarding the 
association between fasting hyperinsulinaemia and pro-
gression of atherosclerotic vascular disease in diabetic 
patients. In a population without diabetes, the Helsinki 
Policeman study and a sub-group analysis of the Quebec 
Cardiovascular study described fasting plasma insulin lev-
els to be an independent predictor of stable angina and 
acute coronary syndromes among men without pre-existing 
cardiovascular or cerebrovascular disease or T2DM.8,9 
Similarly, Yanase et al.,17 García et al.18 and a subgroup 
analysis of the Trandolapril Cardiac Evaluation (TRACE) 
study found endogenous insulin levels to be an independent 
predictor for recurrent cardiovascular events among non-
diabetic patients with established CAD.19 A subgroup anal-
ysis of the Atherosclerosis Risk In Communities (ARIC) 
longitudinal cohort study demonstrated insulin resistance, 
as measured by the HOMA-IR, to be associated with risk of 
incident heart failure among patients without a diagnosis of 
T2DM, prior myocardial infarction or heart failure.20  
Conversely, the Paris Prospective Study, Caerphilly 

Figure 1. Summary of included patients.
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prospective study, Busselton study and several others have 
suggested that plasma insulin levels did not predict the risk 
of atherosclerotic vascular disease among non-diabetics 
independent of other cardiovascular risk factors.10–12

Several mechanisms have been proposed to explain the 
association of hyperinsulinaemia with atherosclerotic vas-
cular disease. Reaven21 introduced the concept of syndrome 
X, later renamed metabolic syndrome, in which resistance 
of peripheral tissues to insulin-mediated glucose disposal 

results in a cluster of risk factors including impaired glucose 
tolerance, elevated triglycerides, decreased HDL choles-
terol, elevated blood pressure and central adiposity. This 
hypothesis remains controversial, and it is unclear whether 
the role of plasma insulin is causal versus correlative. Our 
observations in ACCELERATE suggest that hyperinsulinae-
mia may increase the risk of progression of atherosclerotic 
vascular disease through alterations in metabolic processes 
other than that mediated by dyslipidaemia as participants in 

Table 1. Baseline characteristics of patients who underwent revascularization in comparison to those who did not.

Revascularized
N = 177

No revascularization
N = 1865

p-Value

Baseline characteristics
 Age (years) 65.2 ± 7.9 66.7 ± 8.7 0.020*
 Male gender (%) 137 (77.4) 1481 (79.4) 0.529
 Caucasian (%) 148 (83.6) 1543 (83.2) 0.766
 Body mass index 31.5 ± 5.9 31.1 ± 6.2 0.500
 Current smoker (%) 30 (16.9) 225 (12.1) 0.060
 Coronary artery disease (%) 171 (96.6) 1794 (96.2) 0.781
 Peripheral artery disease (%) 25 (14.1) 237 (12.7) 0.590
 Prior acute coronary syndrome (%) 90 (50.8) 935 (50.1) 0.856
 Prior percutaneous coronary intervention (%) 143 (83.6) 1319 (73.5) 0.004*
 Prior coronary artery bypass grafting (%) 60 (35.1) 646 (36.0) 0.810
Baseline medical therapy
 Statin (%) 170 (96.0) 1778 (95.3) 0.667
 Aspirin (%) 157 (88.7) 1583 (84.9) 0.171
  Angiotensin-converting enzyme inhibitor or 

angiotensin-receptor II antagonist (%)
142 (80.2) 1473 (79.0) 0.697

 Beta-blockers (%) 137 (77.4) 1401 (75.1) 0.501
 Calcium-channel blockers (%) 56 (31.6) 538 (28.8) 0.435
 Anti-glycaemic medication (%) 145 (81.9) 1562 (83.8) 0.529
 Evacetrapib (%) 86 (48.6) 915 (49.1) 0.904
Baseline laboratory parameters
 Insulin (mU/L) 27.7 ± 39.5 21.4 ± 21.0 0.009*
 Haemoglobin A1c (%) 6.63 ± 0.92 6.55 ± 0.96 0.166
 LDL-C (mg/dL) 83.9 ± 26.4 80.3 ± 25.9 0.030*
 HDL-C (mg/dL) 44.2 ± 11.6 44.6 ± 11.2 0.620
 Aldosterone (pmol/L) 133.7 ± 148.2 130.8 ± 183.1 0.590
 High-sensitivity C-reactive protein 2.39 ± 3.41 3.30 ± 8.85 0.776

LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein cholesterol.
*p-value < 0.05 was deemed statistically significant.

Table 2. Use of oral anti-glycaemic medications among patients who underwent revascularization in comparison to those who  
did not.

Oral anti-glycaemic medication Revascularized
N = 177

No revascularization
N = 1865

p-Value

Biguanide (%) 113 (63.8) 1155 (61.9) 0.616
Sulfonylurea (%) 56 (31.6) 536 (28.7) 0.417
Dipeptidyl peptidase-4 inhibitor (%) 32 (18.1) 286 (15.3) 0336
Thiazolidinediones (%) 4 (2.3) 116 (6.2) 0.032*
Alpha-glucosidase inhibitor (%) 5 (2.8) 65 (3.5) 0.644
Combination drug (%) 10 (5.6) 97 (5.2) 0.798
Other (%) 9 (5.1) 95 (5.1) 0.996

*p-value < 0.05 was deemed statistically significant.
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our study were on statin therapy with optimal LDL levels 
at baseline. Excess insulin itself may directly predispose 
patients to cardiovascular events mediated by both an 
inflammatory prothrombotic state and direct effect on the 
arterial wall.22 Insulin increases the synthesis of plasmino-
gen activator inhibitor-1 which promotes thrombosis and is 
associated with vascular inflammation.23,24 Plasminogen 
activator inhibitor-1 can in turn accelerate development of 
atheroma within vessel walls that are prone to rupture and 
has been associated with an increased risk of myocardial 
infarction.25,26 In addition, plasminogen activator inhibi-
tor-1 can increase proliferation of mural cellular elements 
and restenosis after percutaneous coronary intervention.27 
Other mechanisms have also been proposed to explain the 
close relationship between hyperinsulinaemia, endothelial 
dysfunction and hypertension, including altered cell mem-
brane ion exchange, enhanced sympathetic and renin–angi-
otensin–aldosterone system activity and suppressed atrial 
natriuretic peptide activity.28

Although investigation of the cardiovascular safety and 
clinical efficacy of newer anti-glycaemic medications is 
now mandated by the Food and Drug Administration,29 the 
management of hyperinsulinism and insulin resistance itself 
in diabetic patients with vascular disease is not well studied. 
The Bypass Angioplasty Revascularization Investigation 2 
Diabetes (BARI 2D) study was the first major study to 
investigate the optimal treatment for patients with T2DM 
and angiographically defined CAD, comparing outcomes 
associated with an insulin sensitizing strategy versus those 
with an insulin provision strategy.30 BARI 2D found no sig-
nificant difference between the two arms in terms of death 
or cardiovascular events; however, patients randomized to 
the insulin-sensitizing arm had less weight gain, higher 
HDL-C levels, decreased plasma insulin levels and changes 
in biomarker profiles suggestive of restricted fibrinolysis.31

It is possible to treat insulin resistance with pharmaco-
logic interventions that enhance insulin sensitivity (i.e. met-
formin, thiazolidinediones). As such, there was an initial 
enthusiasm for this treatment strategy given several studies 
suggesting a beneficial effect of these agents on cardiovas-
cular outcomes.32–34 However, the ability of such an 
approach to improve clinical outcomes compared with 
weight reduction and exercise alone was tempered by data 
suggesting limited benefit and possible harm associated 
with the use of thiazolidinedione drugs.35 Notably, our study 
population had very low rates of thiazolidinedione or alpha-
glucosidase inhibitor usage. Furthermore, several clinical 
trials have demonstrated the failure of intensifying glucose 
control beyond the current recommendations of the 
American Diabetes Association to show reductions  
in cardiovascular events.36 As such, aggressive lifestyle 
modification focusing on weight reduction, appropriate diet 
and increased physical activity is currently the primary ther-
apy for the management of metabolic syndrome.37–39 
Although our findings do not support routine use of baseline 
fasting plasma insulin level for risk stratification, further 

studies may be warranted regarding its utility in intensifying 
medical therapy and risk factor modification. In addition, it 
may be used as a tool for clinical trial design to identify 
high-risk patients with T2DM who may be more prone to 
cardiovascular events and thus reduce the number of patients 
which need to be enrolled.

Conclusion

In a contemporary population of patients with T2DM and 
high-risk vascular disease on optimum medical therapy, 
baseline fasting plasma insulin levels was an independent 
predictor for MACE and the need of future coronary revas-
cularization suggesting a pathophysiological link between 
hyperinsulinaemia and progression of atherosclerotic vas-
cular disease. Future studies investigating the use of fast-
ing plasma insulin levels as a marker for risk stratification 
to guide use of adjunctive therapies and programmes to 
promote intensive lifestyle modifications among diabetic 
patients with high-risk vascular disease are warranted.
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Introduction

Diabetes is associated with substantially increased  
mortality.1–4 Classic risk factors, for example, older age 
and pre-existing cardiovascular disease (CVD), explain a 
portion of the excess of mortality in type 2 diabetes 
(T2D).5–7 Although improving glycaemic control, usually 
assessed by mean levels of haemoglobin A1c (HbA1c) or 
fasting glucose, is a key recommended goal for clinicians 
to enhance diabetes care,8–10 the relationship of glucose 
control with mortality appears more complicated. Data 
from observational studies have shown J-shaped distribu-
tions for mortality and glycaemic control, with not only 
high HbA1c but also low HbA1c associated with mortality 
risk.11–13 Moreover, intensive efforts to lower glucose in 
more advanced T2D patients have failed to reduce, or 
even increased, mortality.14–16

Recently, several studies reported adverse effects of 
glycaemic variation on macro- and microvascular compli-
cations, as well as risk of hypoglycaemia.17–22 However, 
studies to examine the relationship of glycaemic instability 
with mortality in T2D patients have been limited in num-
ber and have varied widely in the patient population 

studied, the length of follow-up and in the source and 
nature of the data collected.23–26 An investigation using pri-
mary care medical record data from the United Kingdom 
among diabetes patients aged 70 years and older reported 
the association between glycaemic variability, as meas-
ured by variability in HbA1c over a 5-year period, and 
mortality.11 Among US military veterans with T2D, 
Prentice et al.4 used electronic medical records (EMR) to 
examine the relationship between HbA1c variability and 
adverse health outcomes including all-cause mortality. 
Using data from the only glucose lowering trial that has 
examined this issue, visit-to-visit glycaemic variability 
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Diabetes is associated with substantially increased mortality. Classic risk factors explain a portion of the excess of 
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(HbA1c and blood glucose) was identified as a strong 
independent predictor of mortality for mildly hyperglycae-
mic T2D patients randomized to intensive glucose lower-
ing therapy in the Action in Diabetes and Vascular Disease: 
Preterax and Diamicron MR Controlled Evaluation 
(ADVANCE) trial.18 However, a critical concern in prior 
studies is whether unmeasured factors in underlying health 
or behaviour may confound the relationships of glycaemic 
variation with mortality. Whereas Prentice et al. adjusted 
for baseline comorbidity, this may be less completely cap-
tured in EMR. Moreover, no studies have adequately con-
sidered adverse lifestyle behaviours during follow-up.

Therefore, we used data collected during the Veteran 
Affairs Diabetes Trial (VADT) to examine the association 
of time-dependent glycaemic variability with mortality. As 
extensive data collection was possible during the frequent 
in person visits, the current analysis was able to more fully 
account for health status and adverse lifestyle behaviours 
when examining the association of glycaemic variability 
with all-cause mortality.

Methods

The VADT was a randomized trial that enrolled 1791 mili-
tary veterans (mean age, 60.4 years) who had a suboptimal 
response to therapy for T2D (HbA1c > 7.5%) to receive 
either intensive or standard glucose control.5,27 HbA1c and 
fasting glucose were measured every 3 months up to a 
maximum of 84 months. We excluded observations from 
the first 6 months of the trial to eliminate the effect of rapid 
reduction (per protocol) in fasting glucose and HbA1c and 
excluded individuals with two or fewer measurements of 
fasting glucose or HbA1c. The primary outcome for this 
analysis was all-cause mortality.

Lifestyle data were extracted from baseline and quar-
terly follow-up questionnaires: (1) do patients currently 
smoke cigarettes: if ‘Yes’ code as 1, if ‘No’ code as ‘0’; (2) 
do patients exercise regularly: if ‘Yes’ code as ‘0’, if ‘No’ 
code as ‘1’; (3) do patients adhere to diet: if ‘Yes’ code as 
‘0’, if ‘No’ code as ‘1’. To generate adverse lifestyle score, 
we counted the total number of adverse behaviours over 
the three questions at each visit. In order to study the con-
tribution of lifestyle score to glycaemic variability, we first 
categorized visit-to-visit glycaemic variability into the 
lower 50% and upper 50% and used the lifestyle score in a 
generalized estimation equation model to estimate its rela-
tionship with glycaemic variability. We found that a cumu-
lative (worse) lifestyle score was a modest but statistically 
significant predictor of increased glycaemic variability 
[odds ratio (confidence interval, CI), 1.021 (1.011, 1.031), 
p < 0.0001] and all-cause mortality [hazard ratio (HR) 
(CI), 1.027 (1.010, 1.044), p = 0.001].

We compared risks of cumulative mean, maximum and 
most recent fasting glucose or HbA1c values prior to the 
mortality event with measures of variability for both fast-
ing glucose and HbA1c. Coefficient of variation (CV) and 

average real variability (ARV) are frequently used and dis-
tinct measures of glycaemic variability.4,18,21,28–30 As previ-
ously described,21 we normalized these by means of fasting 
glucose and HbA1c, respectively. Variables of glycaemic 
risk were calculated as continuous and time-dependent 
covariates in Cox proportional hazard models.17,31 We first 
examined quintiles of (CV)log-glucose and ARV-glucose 
(or similar variability measures using HbA1c) to compare 
the risks of mortality between high versus low variability 
groups in an age-adjusted model.21 Risk of continuous gly-
caemic variation measures were then modelled after 
adjusting for: Model 1: age only; Model 2: age and base-
line covariates reflecting significant baseline differences 
in characteristics between those who did and did not die 
during the study (Table 1) including a modified updated 
Charlson comorbidity index to reflect diabetes-related 
comorbidity (Supplementary Table 1; similar results were 
obtained if using standard Charlson comorbidity index;32,33 
Model 3: age, baseline covariates and cumulative mean of 
fasting glucose or HbA1c to clarify whether variability 
measures provided risk prediction beyond standard glu-
cose measures; Model 4: Model 3 and a lifestyle score that 
was treated as a time-dependent covariate. Finally, we con-
sidered whether severe hypoglycaemia could be driving 
the relationship between glycaemic variability and mortal-
ity. We first added the variable cumulative severe hypogly-
caemia to Model 4 and second, we repeated analysis after 
removing all patients with severe hypoglycaemia events.

All statistical analyses were performed using R version 
3.4.4 (https://www.r-project.org). A two-sided p < 0.05 
was considered statistically significant.

Results

A total of 1659 individuals who had at least two meas-
urements of fasting glucose or HbA1c after the first 
6 months were included in the analysis, of which 166 
died during the study. The mean and median time to all-
cause death was 48.5 and 48.4 months. There were on 
average 18.5 visit fasting glucose and HbA1c measures 
for individuals within the cohort, and a maximum of 26 
measures. The cohort was 90% men and had a mean 
(SD) age of 64.4 (8.6) years. Several baseline risk fac-
tors were associated with mortality, including ethnicity 
[non-Hispanic White (NHW) or not], diabetes duration, 
prior CVD event, baseline diastolic blood pressure, 
baseline high-density lipoprotein (HDL) cholesterol, 
baseline total cholesterol and the updated Charlson 
comorbidity index (Table 1).

In an age-adjusted model, for fasting glucose and 
HbA1c, both log(CV) and ARV show significant trends for 
increasing risk of mortality with higher quintiles of glu-
cose variability (Figure 1). Compared with quintile 1, indi-
viduals with fasting glucose variability in the upper 
quintiles (i.e. quintiles 2, 3, 4 and 5) had significantly 
higher risk of all-cause mortality. Although there was a 
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significant trend for increasing mortality risk with HbA1c 
variability, HbA1c variability measures were generally 
weaker predictors of all-cause mortality than fasting glu-
cose measures of variability.

In Model 2 adjusting for multiple baseline risk factors, 
the variables’ cumulative mean fasting glucose, cumula-
tive maximum fasting glucose, glucose measures (glucose 
and HbA1c) just prior to death, and log(CV) and ARV of 
fasting glucose were all significant risk factors (p < 0.05) 
for all-cause death (Table 2). After additionally adjusting 
for cumulative mean HbA1c or glucose (Model 3), both 
fasting glucose and HbA1c variability measures were still 
significant. Interestingly, variability measures, but not 
standard measures of glucose control, were significant  

predictors of all-cause mortality, after adjusting for age, base-
line risk factors and cumulative mean HbA1c or glucose.

As adverse lifestyle behaviour may confound the asso-
ciation between glucose variation and mortality, we exam-
ined whether adverse behaviours contributed to glucose 
variability and whether this contribution explained the 
association of glucose variability with mortality. We found 
that a cumulative (worse) lifestyle score was a modest but 
statistically significant predictor of increased glycaemic 
variability (Supplementary Material). However, after addi-
tional adjustment for the effects of cumulative lifestyle 
factors (Model 4), fasting glucose variability remained a 
significant predictor of all-cause mortality and was weak-
ened by only 2%–4%.

Table 1. Baseline characteristics by incident all-cause mortality event status.

All-cause mortality p-value

 No (n = 1493) Yes (n = 166)

Age (years) 59.71 (8.38) 66.30 (8.18) <0.001
Treatment (n, %)
 Standard 752 (50.4) 81 (48.8) 0.762
 Intensive 741 (49.6) 85 (51.2)  
Sex (n, %)
 Male 1445 (96.8) 165 (99.4) 0.1
 Female 48 (3.2) 1 (0.6)  
NHW (n, %)
 No 580 (38.8) 47 (28.3) 0.01
 Yes 913 (61.2) 119 (71.7)  
Smoking status (n, %)
 No 1253 (83.9) 133 (80.1) 0.413
 Yes 240 (16.1) 31 (18.9)  
BMI (kg/m2) 31.28 (4.44) 31.11 (4.78) 0.637
Diabetes duration (years) 11.41 (7.39) 12.82 (8.42) 0.023
Prior CVD event (n, %)
 No 927 (62.1) 57 (34.3) <0.001
 Yes 566 (37.9) 109 (65.7)  
History of hypertension (n, %)
 No 415 (27.8) 39 (23.5) 0.414
 Yes 1075 (72.0) 127 (76.5)  
 Missing 3 (0.2) 0  
History of TZD (n, %)
 No 1205 (80.7) 135 (81.3) 0.931
 Yes 288 (19.3) 31 (18.7)  
Charlson Comorbidity Indexa 1.43 (1.78) 2.74 (2.65) <0.001
Glycated haemoglobin level (%) 9.4 (1.5) 9.4 (1.6) 0.977
DBP (mmHg) 76 (10) 72.7 (11) <0.001
SBP (mmHg) 131 (16) 133 (18) 0.384
HDL cholesterol (mg/dL) 36 (10) 34 (10) 0.003
LDL cholesterol (mg/dL) 111 (63) 108 (80) 0.522
Total cholesterol (mg/dL) 184 (49) 176 (39) 0.046
Triglycerides (mg/dL) 215(295) 211 (131) 0.856

SD: standard deviation; NHW: non-Hispanic White; BMI: body mass index; CVD: cardiovascular diseases; TZD: thiazolidinediones; DBP: diastolic 
blood pressure; SBP: systolic blood pressure; HDL: high-density lipoprotein; LDL: low-density lipoprotein.
Data are number of participants and (percent) or means and (SD).
aUpdated Charlson Comorbidity Index.
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Additional adjustment for severe hypoglycaemia did 
not reduce the association of fasting glucose variability 
with all-cause mortality, but reduced significance of 
HbA1c variability. When excluding participants who 
experienced severe hypoglycaemia events (n = 268), we 
found no change in the relationships of log(CV) glucose 
and ARV glucose with all-cause mortality (Table 3).

Discussion

Our findings show that during the VADT glucose lower-
ing intervention phase, visit-to-visit variability measures 
were significantly associated with all-cause mortality. 

Adjustment for standard risk factors and standard meas-
ures of glucose control (e.g. fasting glucose) did not lessen 
the association. These data indicate that even these rela-
tively simple measures of visit-to-visit variation may pro-
vide additional information regarding future mortality 
risk. Although the number of events was substantially 
lower, significant associations were found for both CVD 
specific (n = 57) and all other (n = 109) mortality endpoints 
in exploratory analyses (p < 0.05 for both fasting glucose 
log(CV) and ARV for using Model 4).

These findings are consistent with the growing body 
of work demonstrating that oscillation of plasma glucose 
can enhance oxidative stress generation and alter 
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Figure 1. Hazard ratio (HR) estimates for quintiles of Log(CV)-glucose and ARV-glucose for mortality adjusted for age. Vertical 
bars shown are the 95% confidence interval (95% CI) associated with HR estimates. ***Estimated HR in the indicated variability 
quintile is significantly higher than the HR of lowest variability quintile (quintile 1). Trend test results are presented as the text 
annotation in the figures. CV: coefficient of variation; ARV: average real variability.
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endothelial function more than stable elevated levels of 
glucose.28,34,35 This suggests that the pattern of glucose 
control, not just the absolute levels, may also be a determi-
nant of disease risk.

The VADT was a large, carefully conducted trial that 
provides a more carefully defined and better character-
ized cohort than was examined in most previously 
reported studies.11,19 This allows us both confidence in 
the ‘fasting’ nature of blood draws and in the estimates 
for very important potential confounders such as hypo-
glycaemia, comorbidity and unhealthy lifestyle behav-
iour; factors that have infrequently been considered (and 
never altogether) in analyses. The persistence of glucose 
variation measures as predictors of all-cause mortality 
after accounting for these variables provides further sup-
port for their unique and clinical importance. In addi-
tion, there were many visits over the nearly 7 years of 
follow-up providing many glucose measures for a robust 
estimate of long-term visit-to-visit variation. As the 
VADT was a randomized study of glucose treatment 
intensity (not different medication classes), participants’ 
diabetes medications were quite similar overall, remov-
ing an important potential contributor to glucose varia-
tion and outcomes that were less readily addressed in 
prior observational studies. In contrast to the sub-analy-
sis of ADVANCE,18 this analysis was not limited to the 
more intensively treated arm, providing a complemen-
tary whole cohort analysis that helps make these find-
ings more generalizable.

Our study has several limitations. The typical partici-
pant in the VADT was older, predominantly male and at 
high CVD risk. These results do however support the find-
ings reported from ADVANCE,18 which included a more 
diverse set of T2D participants. We were not able to esti-
mate daily glucose variation as that requires more extensive 

collection of daily glucose measures than was conducted 
within the VADT. This within day glycaemic variation 
could add to, or perhaps account for, the effects of visit-to-
visit variation. Finally, there are potentially other unmeas-
ured variables, including other adverse lifestyle behaviours, 
that may account for some of the relationship between glu-
cose variation and mortality.

In conclusion, our study finds a strong association 
between higher visit-to-visit glycaemic variability and 
increased risk of mortality during the VADT that is inde-
pendent of other traditional risk factors. These associa-
tions persist even when accounting for the increased risk 
for severe hypoglycaemia that accompanies greater glu-
cose variation. These results greatly strengthen the grow-
ing body of evidence supporting the importance of 
glycaemic variation in diabetes complications and suggest 
that efforts to improve glucose control in patients may 
need to consider how these strategies influence glucose 
fluctuation.
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Table 3. Cox proportional hazards model for all-cause mortality, after accounting for severe hypoglycaemia.

Variables Analysis with additional cumulative 
severe hypoglycaemia adjustment

Analysis excluding patients 
having severe hypoglycaemiaa

Model 4 + severe hypo Model 4

HR (CI), p-value HR (CI), p-value

Blood glucose
 Log(CV) glucose 1.316 (1.104, 1.568), 0.003 1.451 (1.193, 1.766), <0.001
 ARV glucose 1.177 (1.017, 1.361), 0.029 1.272 (1.080, 1.498), 0.004
HbA1c
 Log(CV) HbA1c 1.188 (0.992, 1.423), 0.061 1.276 (1.049, 1.553), 0.015
 ARV HbA1c 1.169 (0.991, 1.379), 0.064 1.251 (1.049, 1.492), 0.013

CV: coefficient of variation; ARV: average real variability; HbA1c: glycated haemoglobin; HR: hazard ratio; CI: confidence interval.
Data are HR, 95% CI and p-values estimated by Cox proportional hazards model for all-cause mortality. Left panel shows results by additionally 
adjusting for cumulative hypoglycaemia in Model 4, while right panel shows results when participants with severe hypoglycaemia were excluded. 
p-values in bold font show significant (p-value <0.05) risk for the primary outcome. A severe hypoglycaemia episode was defined as ‘incomplete loss 
of consciousness that requires assistance’ or ‘complete loss of consciousness’ occurring since the last visit.
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Introduction

The pathophysiology of type 2 diabetes mellitus 
(T2DM) is characterized not only by insulin resistance 
and β-cell dysfunction but also by relative or absolute 
hyperglucagonaemia.1 Recently, the role of glucagon 
has received much attention as an important additional 
contributor of glucose control and treatment target of 
antidiabetic agent.2,3 Addressing glucagon seems an 
attractive treatment for T2DM either by suppression of 
glucagon or by blocking glucagon receptor.4

In addition to its effects on glucose metabolism, gluca-
gon is known to exert effects on lipid metabolism.5 
Glucagon action was shown to be essential for multiple 
pathways regulating lipid homeostasis and leading to 
reduced lipogenesis.6 Reduced glucagon action is associ-
ated with the development of fatty liver, and exogenous 

glucagon administration reduces fatty liver in human and 
animal studies.7–9 On the contrary, some experimental dia-
betes settings revealed that attenuation of glucagon action 
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using glucagon receptor knockout mice was associated 
with reduction in hepatic steatosis.10

Nonalcoholic fatty liver disease (NAFLD) is the most 
common cause of chronic liver disease and is increasingly 
diagnosed worldwide.11 Those with T2DM appear to have 
an increased risk of developing NAFLD and have a 
poor hepatic prognosis compared with individuals with-
out T2DM.12,13 It is well acknowledged that T2DM and 
NAFLD share a common pathogenic mechanism of insu-
lin resistance.14,15 On the other hand, some studies have 
proposed a role of glucagon in NAFLD independent of 
insulin resistance (IR), but evidence was usually from pre-
clinical or animal studies.16

Since glucagon secretion is highly affected by insulin, 
and the disproportionate changes of the two hormones are 
clearly revealed, it might make sense to consider glucagon 
relative to insulin as a glucagon-to-insulin ratio (GI ratio) 
instead of assessing each absolute value separately.1–3,17 
Previous studies have demonstrated that an increase in 
glucagon concentration and GI ratio reflects hyperglycae-
mia and degree of glycaemic control in individuals with 
T2DM.18–21 Other studies have revealed a role of GI ratio 
in pancreatic cancer-related diabetes mellitus (DM).22,23 
Although glucagon relative to insulin is receiving much 
attention recently, there are little data regarding the asso-
ciation between GI ratio and NAFLD independent of insu-
lin resistance in individuals with T2DM. There is a 
possibility that liver lipid infiltration in T2DM could be 
associated with low glucagon relative to insulin because it 
may be led by glucagon action reducing lipogenesis. 
Therefore, the aim of this study is to investigate the 
hypothesis that lower GI ratio is associated with the pres-
ence of NAFLD.

Methods

Study design and subjects

Among 230 participants with T2DM who were admitted 
for glucose control to the Endocrinology Division of 
Soonchunhyang University Bucheon Hospital from April 
2015 to June 2017, participants were eligible if they had no 
history or clinical evidence of chronic liver disease or cir-
rhosis, no positive test for hepatitis B or hepatitis C, no 
medication associated with hepatotoxicity and no history 
of alcohol consumption. ‘No history of alcohol consump-
tion’ was defined as less than 30 g alcohol/day for men and 
less than 20 g alcohol/day for women.24,25 In addition, par-
ticipants with type 1 diabetes, those older than 80 years of 
age, those with inflammatory bowel disease or gut resec-
tion except appendectomy, those lacking fasting glucagon 
and insulin data and those lacking liver ultrasonography 
(US) data were excluded. Finally, 172 participants were 
included for analysis in this cross-sectional study. In total, 
12 of the 172 participants were lacking postprandial gluca-
gon data. We reviewed detailed demographic, biochemical 

and clinical data and treatment history using medical 
records. The smoking status of the subjects was classified 
as non-smoker or current smoker. All participants were 
informed of the purpose of the study, and their consent was 
obtained. The study was approved by the Institute Review 
Board of Soonchunhyang University School of Medicine, 
Bucheon Hospital.

Anthropometric and biochemical measurements

Height and weight were measured to the nearest 0.1 cm 
and 0.1 kg, respectively. Body mass index (BMI) was cal-
culated as body weight (kg) divided by height squared 
(square metres). Blood samples were collected after over-
night fasting. HbA1c was measured by ion exchange high-
performance liquid chromatography (Bio-Rad, Hercules, 
CA, USA). The methodology was aligned with the 
Diabetes Control and Complications Trial and National 
Glycohemoglobin Standardization Program standards.26 
Aspartate aminotransferase (AST), alanine aminotrans-
ferase (ALT), total cholesterol (TC), low-density lipopro-
tein cholesterol (LDL-C) and triglyceride (TG) were 
determined using the liquid enzymatic method with an 
automatic biochemical analyzer (7600-110; Hitachi Inc., 
Tokyo, Japan) and high-density lipoprotein cholesterol 
(HDL-C) was measured by the selective inhibition method. 
Estimated glomerular filtration rate (eGFR) was calculated 
by the Modification of Diet in Renal Disease (MDRD) 
study equation.

Participants underwent a meal test with measurements 
of plasma glucose, insulin and glucagon concentrations at 
0 and 30 min. Serum insulin was measured using an immu-
noradiometric assay kit (DIAsource, Belgium). Fasting 
and postprandial samples for plasma glucagon were col-
lected and analyzed using a radioimmunoassay kit (MP 
Biomedical, CA, USA).

The insulin resistance (IR) status was evaluated by the 
homeostasis model assessment–insulin resistance 
(HOMA-IR) index. The HOMA-IR was calculated by the 
following formula: [fasting insulin (µIU/mL) × fasting 
plasma glucose (mmol/L)]/22.5.

Evaluation of fatty liver by US

Liver US was carried out by experienced radiologists. The 
diagnosis of hepatic steatosis was made on the basis of 
characteristic sonographic features: that is, diffuse hyper-
echogenicity of the liver; increased liver contrast com-
pared to kidney; vascular blurring, mainly of portal veins 
and attenuation of echogenic level in a deep seated area.25

Sonographic measurement of abdominal fat thickness 
was performed using high-resolution B-mode US by a sin-
gle experienced investigator.27,28 Subcutaneous fat thick-
ness (SFT) and visceral fat thickness (VFT) were measured 
in the region 1 cm above the umbilicus using a 12-MHz 
linear-array probe and a 3.5-MHz convex-array probe, 
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respectively. SFT was defined as the maximal thickness of 
the fat tissue layer between the skin-fat interface and the 
linea alba. VFT was defined as the distance between the 
anterior wall of the aorta and the posterior aspect of the 
rectus abdominis muscle perpendicular to the aorta. The 
intra-observer technical error of measurement was 1.4%–
2.3% for VFT and 1.1%–1.7% for SFT.

Statistical analysis

Data are reported as mean ± standard deviation (SD) for 
continuous variables or as number of participants (percent-
age) for categorical variables. Differences in demographic 
and clinical characteristics according to the tertile of GI 
ratio were evaluated by one-way analysis of variance 
(ANOVA) or Kruskal–Wallis test for continuous variables 
and chi-square test for categorical variables. To evaluate 
the linear trend of the prevalence of NAFLD according to 
GI ratio tertile, p values were calculated by Jonckheere–
Terpstra linear trend test for continuous variables and 
Mantel–Haenszel’s linear-by-linear association test for 
categorical variables.

The correlations of serum GI ratio and other clinical 
variables were assessed by Spearman’s rank correlation 
coefficient. The odds ratio (OR) was used as a measure of 
the association between serum GI ratio and the presence of 
NAFLD in multivariate logistic regression analysis. To 
compute ORs of serum GI ratio, several models were set 
up and adjusted for potential confounders determined 
through the result of the group comparison and the assess-
ment of multicollinearity by generalized variance inflation 
factor (GVIF).

A two-tailed p value less than 0.05 was considered sta-
tistically significant. All statistical analyses were per-
formed using SPSS (version 14.0; SPSS, Inc., Chicago, 
IL) and R (version 3.1.3, The R Foundation for Statistical 
Computing, Vienna, Austria).

Results

Clinical characteristics of participants according 
to GI ratio

The general characteristics of the study population are pre-
sented in Table 1. There was no significant difference by 
sex. The mean age of the study subjects was 57 years, and 
the mean duration of DM was 7.5 years. Among all of the 
participants, 87 (51%) had been diagnosed with NAFLD.

The participants were divided into three groups accord-
ing to GI ratio. The clinical parameters according to fast-
ing GI ratio tertile and postprandial GI ratio tertile are 
shown in Tables 2 and 3, respectively. The mean levels of 
BMI, VFT, SFT, HOMA-IR and eGFR were significantly 
decreased with increasing tertiles, and duration of DM 
and fasting and postprandial glucagon was significantly 

increased across fasting GI ratio tertiles (p = 0.002, 
p = 0.006, p < 0.001, p < 0.001, p = 0.039, p = 0.036, 
p < 0.001 and p < 0.001, respectively; Table 2). The preva-
lence of fatty liver was significantly decreased across GI 
ratio tertiles (p = 0.009; Table 2). Dipeptidyl peptidase 4 
(DPP4) inhibitor treatment was comparable among the 
three groups (p = 0.32; Table 2). The mean levels of fasting 
and postprandial insulin, HbA1c, AST, ALT and lipid pro-
files were comparable among the groups (Table 2). Similar 
results were also shown according to postprandial GI ratio 
tertile except for some clinical variables (Table 3). The 
mean levels of HbA1c, HDL-C and postprandial glucagon 

Table 1. The clinical characteristics and laboratory findings of 
the study populations.

Variable Total

(N = 172)

Age (years) 57 ± 16
Men 86 (50%)
Duration of DM (years) 7.5 ± 8.6
Current smoking (%) 31 (18.0%)
Alcohol (%) 38 (22%)
BMI (kg/m2) 24.9 ± 4.4
VFT (cm) 43.4 ± 20.6
SFT (cm) 13.8 ± 5.6
Insulin (fasting, µIU/mL) 8.8 ± 6.1
Insulin (30 min; µIU/mL) 16.8 ± 13.1
Glucagon (fasting; pg/mL) 244 ± 198
Glucagon (30 min; pg/mL) 297 ± 191
HOMA-IR 4.0 ± 3.0
HbA1c (mmol/mol; %) 91 ± 9 (10.6 ± 2.5)
AST (IU/L) 27 ± 24
ALT (IU/L) 29 ± 29
eGFR (mL/min/1.73 m2) (MDRD) 66.3 ± 25.8
DPP4 inhibitor 42 (31.8%)
Total cholesterol (mg/dL) 168 ± 51
LDL-cholesterol (mg/dL) 97 ± 39
HDL-cholesterol (mg/dL) 43 ± 14
Triglycerides (mg/dL) 178 ± 202
NAFLD (%) 877 (51%)
Treatment modality
 No medication 63 (36.7%)
 OHA only 57 (33.1%)
 Insulin only 32 (18.6%)
 OHA + insulin 20 (11.6%)

MDRD: Modification of Diet in Renal Disease; DM: diabetes mellitus; 
BMI: body mass index; VFT: visceral fat thickness; SFT: subcutaneous fat 
thickness; HOMA-IR: homeostasis model assessment-insulin resistance; 
HbA1c: glycated haemoglobin; AST: aspartate aminotransferase; ALT: 
alanine aminotransferase; eGFR: estimated glomerular filtration rate; 
DPP4: dipeptidyl peptidase 4; LDL: low-density lipoprotein; HDL: high-
density lipoprotein; NAFLD: nonalcoholic fatty liver disease; OHA: oral 
hypoglycaemic agent.
Data were reported as mean ± standard deviation for continuous 
variables and n(%) for categorical variables.
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steadily increased and postprandial insulin level gradually 
decreased across postprandial GI ratio tertiles (p = 0.003, 
p = 0.029, p < 0.001 and <0.001, respectively). The mean 
eGFR levels were not different in postprandial GI ratio ter-
tile groups (p = 0.334; Table 3).

Bivariate correlations of serum GI ratio with 
clinical variables

The serum fasting and postprandial GI ratios were nega-
tively correlated with BMI (r = –0.29, p < 0.001, r = –0.307, 
p < 0.001), VFT (r = –0.27, p = 0.001, r = –0.331, p < 0.001), 

SFT (r = –0.325, p < 0.001, r = –0.231, p = 0.007), fasting 
and postprandial insulin (r = –0.716, p < 0.001, r = –0.531, 
p < 0.001, r = –0.46, p < 0.001, r = –0.818, p < 0.001), 
HOMA-IR (r = –0.56, p < 0.001, r = –0.312, p < 0.001) and 
ALT (r = –0.164, p = 0.032, r = –0.251, p = 0.001) and posi-
tively correlated with fasting and postprandial glucagon 
(r = 0.538, p < 0.001, r = 393, p < 0.001, r = 0.413, 
p < 0.001, r = 0.507, p < 0.001; Table 4). Duration of DM 
was positively correlated with fasting GI ratio but not post-
prandial GI ratio (r = 158, p = 0.039, r = 0.091, p = 0.253). 
HbA1c and HDL-C were positively correlated with post-
prandial GI ratio but not fasting GI ratio (r = 0.167, p = 0.03, 

Table 2. The clinical characteristics and laboratory findings according to the tertile of fasting glucagon-to-insulin ratio.

Variable Fasting glucagon-to-insulin ratio tertile p for 
trend

Tertile 1 (<18.87) Tertile 2 (18.87–37.73) Tertile 3 (>37.73)

N 56 57 58  
Age (years) 54.0 [50.5; 65.0] 60.0 [47.0; 73.0] 56.5 [39.8; 72.0] 0.858
Men 23 (41.1%) 33 (57.9%) 30 (51.7%) 0.261
Duration of DM (year) 1.0 [0.0; 10.0] 5.0 [0.0; 13.0] 6.0 [1.0; 15.0] 0.036
Current smoking (%) 7 (12.5%) 10 (17.5%) 5 (8.9%) 0.528
Alcohol (%) 13 (23.2%) 18 (31.6%) 7 (12.5%) 0.147
BMI (kg/m2) 25.9 ± 4.6 25.0 ± 3.7 23.6 ± 4.5 0.002
VFT (cm) 46.2 [28.6; 54.8] 45.2 [34.4; 56.3] 32.8 [23.6; 44.1] 0.006
SFT (cm) 14.8 [11.4; 20.2] 13.6 [10.6; 17.4] 11.0 [7.8; 14.5] <0.001
Insulin (fasting; µIU/mL) 11.4 [8.5; 15.2] 7.8 [6.1; 10.0] 4.1 [1.7; 6.4] 0.214
Insulin (30 min; µIU/mL) 20.7 [12.9; 29.0] 14.3 [9.2; 21.5] 7.5 [3.6; 12.4] 0.214
Glucagon (fasting; pg/mL) 134.5 [109.7; 174.5] 216.0 [157.0; 286.0] 277.5 [178.0; 422.3] <0.001
Glucagon (30 min; pg/mL) 208.7 [143.0; 246.8] 273.0 [222.0; 350.0] 317.8 [222.0; 455.0] < 0.001
HOMA-IR 4.7 [3.2; 7.0] 3.1 [2.1; 6.0] 2.1 [0.8; 3.3] <0.001
HbA1c (mmol/mol; %) 88 ± 9 (10.2 ± 2.2) 93 ± 9 (10.7 ± 2.6) 97 ± 9 (11.0 ± 2.6) 0.099
AST (IU/L) 21 [17; 34.5] 18 [15; 24] 20 [14.3; 31.5] 0.441
ALT (IU/L) 22 [15.5; 44] 17 [13; 25.3] 18 [13; 28.8] 0.565
eGFR (mL/min/1.73 m2) 
(MDRD)

75.0 [59.3; 86.0] 58.9 [48.4; 75.3] 68.9 [40.9; 81.6] 0.039

Metformin 18 (45%) 19 (39.6%) 19 (38%) 0.786
DPP4 inhibitor 15 (41.7%) 13 (31.0%) 11 (24.4%) 0.32
SGLT2 inhibitor 1 (1.8%) 2 (3.4%) 0 0.369
Insulin 10 (17.5%) 19 (32.8%) 23 (40.4%) 0.026
Total cholesterol (mg/dL) 169.4 ± 54.0 168.3 ± 54.3 165.1 ± 45.9 0.635
LDL-cholesterol (mg/dL) 95.0 [72.0; 123.0] 97.0 [69.0; 118.5] 87.0 [58.0; 115.0] 0.188
HDL-cholesterol (mg/dL) 40.0 [34.5; 47.0] 39.0 [35.5; 49.5] 43.0 [35.5; 50.5] 0.302
Triglycerides (mg/dL) 122.0 [85.0; 190.5] 139.5 [97.5; 228.0] 124.0 [72.0; 180.0] 0.491
NAFLD (%) 34 (70.8%) 32 (66.7%) 21 (42.0%) 0.009
Treatment modality 0.095
 No medication 24 (41.2%) 21 (36.2%) 18 (31.6%)  
 OHA only 21 (36.8%) 18 (31.0%) 18 (31.6%)  
 Insulin only 8 (14%) 13 (22.4%) 11 (19.3%)  
 OHA + insulin 4 (7%) 6 (10.3%) 10 (17.5%)  

MDRD: Modification of Diet in Renal Disease; DM: diabetes mellitus; BMI: body mass index; VFT: visceral fat thickness; SFT: subcutaneous fat thick-
ness; HOMA-IR: homeostasis model assessment-insulin resistance; HbA1c: glycated haemoglobin; AST: aspartate aminotransferase; ALT: alanine ami-
notransferase; eGFR: estimated glomerular filtration rate; DPP4: dipeptidyl peptidase 4; SGLT2: sodium-glucose cotransporter 2; LDL: low-density 
lipoprotein; HDL: high-density lipoprotein; NAFLD: nonalcoholic fatty liver disease; OHA: oral hypoglycaemic agent.
Data were reported as mean ± standard deviation or median [interquartile range (IQR)] for continuous variables and n(%) for categorical variables.
p values were calculated by Jonckheere–Terpstra linear trend test for continuous variables and Mantel–Haenszel’s linear-by-linear association test 
for categorical variables.
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r = 0.199, p = 0.012, r = 0.141, p = 0.066, r = 0.124, p = 0.11) 
and AST was negatively correlated with only postprandial 
GI ratio (r = –0.208, p = 0.008). No significant correlation 
was seen between eGFR, TC, LDL-C and TG and fasting 
or postprandial GI ratio (Table 4).

Comparison of prevalence of NAFLD across GI 
ratio tertiles

Prevalence of NAFLD according to fasting or postprandial 
GI ratio tertile showed statistically significant differences 

(p for trend = 0.009, p = 0.001, respectively), with a signifi-
cant decrease in the prevalence of NAFLD with GI ratio 
tertile (70.8% vs 66.7% vs 42% in fasting GI ratio tertile; 
69.6% vs 68.8% vs 39% in postprandial GI ratio tertile; 
Figure 1).

Multiple logistic regression analysis of the 
association of GI ratio with presence of NAFLD

Multivariate logistic regression analysis was used to cal-
culate ORs for NAFLD as a function of GI ratio tertile 

Table 3. The clinical characteristics and laboratory findings according to the tertile of postprandial glucagon-to-insulin ratio.

Variable Postprandial glucagon-to-insulin ratio tertile p for 
trend

Tertile 1  
(<13.40)

Tertile 2  
(13.40–29.69)

Tertile 3  
(>29.69)

N 53 53 54  
Age (years) 56.0 [46.0; 72.0] 58.0 [46.0; 67.0] 56.5 [42.0; 72.0] 0.786
Men 26 (49.1%) 30 (56.6%) 26 (48.1%) 0.921
Duration of DM (years) 3.0 [0.0; 10.0] 4.0 [0.0; 13.0] 5.0 [0.0; 15.0] 0.653
Current smoking (%) 6 (11.3%) 10 (19.2%) 6 (11.3%) 0.969
Alcohol (%) 14 (26.4%) 16 (30.8%) 6 (11.3%) 0.057
BMI (kg/m2) 26.2 ± 4.9 24.7 ± 3.4 23.5 ± 4.2 0.002
VFT (cm) 47.1 [37.0; 53.9] 44.3 [30.9; 54.2] 32.8 [23.6; 42.3] 0.001
SFT (cm) 13.3 [10.7; 20.2] 13.9 [11.1; 16.6] 11.8 [8.0; 14.4] 0.018
Insulin (fasting; µIU/mL) 9.1 [7.3; 13.7] 7.6 [6.0; 11.1] 4.5 [3.2; 7.8] 0.217
Insulin (30 min; µIU/mL) 23.8 [18.5; 29.0] 13.2 [10.4; 16.3] 6.0 [2.2; 9.6] <0.001
Glucagon (fasting; pg/mL) 150.0 [119.5; 216.2] 199.0 [132.0; 282.3] 254.8 [167.8;415.0] 0.223
Glucagon (30 min; pg/mL) 207.5 [135.0; 242.0] 273.0 [205.3; 341.0] 335.5 [222.0; 476.0] <0.001
HOMA-IR 4.2 [2.4; 7.1] 3.2 [2.2; 5.4] 2.5 [1.0; 3.9] 0.002
HbA1c (mmol/mol; %) 84 ± 9 (9.8 ± 2.0) 95 ± 9 (10.8 ± 2.4) 99 ± 9 (11.2 ± 2.7) 0.003
eGFR (mL/min/1.73 m2) (MDRD) 66.3 [54.0; 85.4] 65.2 [48.4; 78.5] 67.5 [47.0; 82.8] 0.334
AST (IU/L) 21 [17–32.8] 19 [15–29] 19 [14–25] 0.986
ALT (IU/L) 21.5 [15.3–42] 17.5 [13–35] 17 [12–23.5] 0.245
Metformin 22 (50%) 15 (38.5%) 15 (33.3%) 0.263
DPP4 inhibitor 17 (44.7%) 9 (26.5%) 10 (23.8%) 0.094
SGLT2 inhibitor 0 3 (5.6%) 0 0.05
Insulin 11 (18.9%) 17 (31.5%) 20 (37.7%) 0.094
Total cholesterol (mg/dL) 168.0 ± 57.3 166.1 ± 52.8 165.2 ± 43.0 0.955
LDL-cholesterol (mg/dL) 92.5 [69.0; 123.0] 95.5 [68.5; 119.5] 89.0 [61.0; 113.0] 0.334
HDL-cholesterol (mg/dL) 38.0 [35.0; 46.0] 38.0 [32.0; 48.0] 46.5 [37.0; 52.0] 0.029
Triglycerides (mg/dL) 126.5 [80.0; 201.5] 153.0 [105.0; 213.0] 112.5 [82.0; 167.0] 0.277
NAFLD (%) 32 (69.6%) 33 (68.8%) 16 (39.0%) 0.001
Treatment modality 0.991
 No medication 18 (34.0%) 20 (37.1%) 21 (39.6%)  
 OHA only 20 (37.7%) 19 (35.2%) 14 (26.4%)  
 Insulin only 9 (17.0%) 12 (22.2%) 10 (18.9%)  
 OHA + insulin 6 (11.3%) 3 (5.6%) 8 (15.1%)  

MDRD: Modification of Diet in Renal Disease; DM: diabetes mellitus; BMI: body mass index; VFT: visceral fat thickness; SFT: subcutaneous fat thick-
ness; HOMA-IR: homeostasis model assessment-insulin resistance; HbA1c: glycated haemoglobin; AST: aspartate aminotransferase; ALT: alanine ami-
notransferase; eGFR: estimated glomerular filtration rate; DPP4: dipeptidyl peptidase 4; SGLT2: sodium-glucose cotransporter 2; LDL: low-density 
lipoprotein; HDL: high-density lipoprotein; NAFLD: nonalcoholic fatty liver disease; OHA: oral hypoglycaemic agent.
Data were reported as mean ± standard deviation or median [interquartile range (IQR)] for continuous variables and n(%) for categorical 
variables.
p values were calculated by Jonckheere–Terpstra linear trend test for continuous variables and Mantel–Haenszel’s linear-by-linear association test 
for categorical variables.
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(Table 5). Individuals with the lowest fasting GI ratio had 
an OR of 3.35 [95% confidence interval (CI) = 1.47–7.93] 
for NAFLD compared to those with the highest GI ratio 
after adjusting for age and sex. This significant association 
remained after adjusting for BMI, DM duration and insulin 
treatment [OR = 2.68 (1.08–6.86)).]. In addition, the OR 
for presence of NAFLD according to postprandial GI ratio 
tertile was also evaluated and revealed similar results with 
those of fasting GI ratio. Individuals with the lowest post-
prandial GI ratio tertile had an OR of 2.72 [1.03–7.35] for 

NAFLD compared to those with the highest GI ratio even 
after adjusting for the above mentioned covariates.

Discussion

In this study, there was a significant relation between both 
fasting and postprandial GI ratio and presence of fatty 
liver. We found that the prevalence of NAFLD was signifi-
cantly decreased across tertiles of fasting and postpran-
dial GI ratio. This suggests that lower glucagon relative to 

Table 4. Correlation of fasting glucagon-to-insulin ratio, postprandial glucagon-to-insulin ratio with other clinical variables.

Variable Fasting glucagon-to-insulin ratio Postprandial glucagon-to-insulin ratio

r (p value) r (p value)

Age (years) 0.001 (0.988) −0.028 (0.725)
Duration of DM (years) 0.158 (0.039) 0.091 (0.253)
BMI (kg/m2) −0.29 (<0.001) −0.307 (<0.001)
VFT (cm) −0.27 (0.001) −0.331 (<0.001)
SFT (cm) −0.325 (<0.001) −0.231 (0.007)
HOMA-IR −0.56 (<0.001) −0.312 (<0.001)
HbA1c (mmol/mol) 0.141 (0.066) 0.167 (0.03)
eGFR (mL/min/1.73 m2) (MDRD) −0.121 (0.115) −0.062 (0.433)
AST (IU/L) −0.134 (0.08) −0.208 (0.008)
ALT (IU/L) −0.164 (0.032) −0.251 (0.001)
Total cholesterol (mg/dL) −0.012 (0.876) −0.018 (0.826)
LDL-cholesterol (mg/dL) −0.081 (0.3) −0.08 (0.322)
HDL-cholesterol (mg/dL) 0.124 (0.11) 0.199 (0.012)
Triglycerides (mg/dL) −0.085 (0.275) −0.138 (0.086)

r: Spearman’s correlation coefficient; MDRD: Modification of Diet in Renal Disease; DM: diabetes mellitus; BMI: body mass index; VFT: visceral fat 
thickness; SFT: subcutaneous fat thickness; HOMA-IR: homeostasis model assessment-insulin resistance; HbA1c: glycated haemoglobin; eGFR: esti-
mated glomerular filtration rate; AST: aspartate aminotransferase; ALT: alanine aminotransferase; LDL: low-density lipoprotein; HDL: high-density 
lipoprotein.

Figure 1. The prevalence of fatty liver according to (a) glucagon-to-insulin ratio and (b) postprandial glucagon-to-insulin ratio.
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insulin may be independently associated with NAFLD in 
individuals with T2DM.

The pathophysiologic role of glucagon in development 
of T2DM has been recognized during the last couple of 
decades; in recent years, it has been attracting much inter-
est as an important treatment target of antidiabetic agents. 
The reduction of glucagon level is one of the main mecha-
nisms of action of some antidiabetic drugs for T2DM.4

By modulating the relative concentrations of glucagon 
and insulin, the alpha and beta cells of the pancreas con-
trol glucose metabolism. Since glucagon secretion is 
highly affected by insulin, and absolute insulin and gluca-
gon levels have not been determined in subjects with dia-
betes, it may make sense to consider the GI ratio instead 
of assessing absolute values.17 GI ratio describes the sig-
nificance of GI bipolar axis. Increased GI ratio may reflect 
insulinopenia or relative hyperglucagonaemic conditions, 
and decreased GI ratio may reflect hyperinsulinaemia or 
insulin resistance.

In addition to its effects on glucose metabolism, gluca-
gon is also known to exert effects on lipid metabolism.7 
Glucagon exerts hypolipidaemic effects on hepatocytes 
and promotes mobilization of hepatic fat in various species 
and preclinical studies.6,7,29 Exogenous glucagon adminis-
tration reduced fatty liver in human and animal studies.9,10 
In addition, attenuation of glucagon receptor signalling is 
predicted to be associated with increased risk of fatty 
liver.6,30 Such results have proposed a beneficial role of 
glucagon in NAFLD, whereas conflicting results have also 
been reported.8 An experimental diabetes setting revealed 
that attenuation of glucagon action using glucagon recep-
tor knockout mice has been associated with reduction in 
hepatic steatosis with or without compensatory increased 
plasma glucagon.11

Although NAFLD is considered a hepatic manifestation 
of metabolic syndrome and its main pathogenesis is based 

on insulin resistance, which is an essential component of 
T2DM, a significant role of glucagon in NAFLD has also 
been suggested.15,16 However, research regarding the rela-
tionship of glucagon and NAFLD in subjects with T2DM is 
scarce and inconsistent. Since glucagon reduces lipogene-
sis by multiple mechanisms, it was thought that reduction 
of glucagon signalling, that is, via the use of glucagon 
receptor antagonists, may lead to the unfavourable accumu-
lation of lipids in the liver.30 Chronic treatment with a 
glucagon receptor antagonist demonstrated increases in 
hepatic fat in individuals with T2DM.31 Anoop et al.32 
reported that the mean values of fasting and postprandial 
glucagon levels were higher in group of T2DM with 
NAFLD compared to group of T2DM without NAFLD in 
81 Indian men with T2DM. Suppli et al.33 reported that 
both normoglycaemic individuals and individuals with 
T2DM with NAFLD exhibit fasting hyperglucagonaemia 
compared to similarly grouped individuals without 
NAFLD. However, whether hyperglucagonaemia is a com-
pensatory consequence of steatosis or directly involved in 
the pathogenesis of NAFLD remains unanswered.

Nonlinearities in the liver response to the insulin and 
glucagon stimuli may exist in the physiologic range, and 
the pattern of their interaction may be very complex.17 
Although more severe insulin resistance was associated 
with higher fasting glucagon level, less early glucagon 
suppression and greater late glucagon suppression, the 
relationship between insulin sensitivity and fasting gluca-
gon concentration was shown to be nonlinear. Therefore, it 
may make sense to consider glucagon relative to insulin 
instead of each absolute value. To our knowledge, there is 
no reported study regarding the relationship of GI ratio and 
NAFLD in individuals with T2DM. Therefore, we investi-
gated their associations in participants with T2DM and 
found that the presence of NAFLD was significantly 
increased in participants with lower GI ratio. Decreased GI 

Table 5. Relative risk for fatty liver according to glucagon-to-insulin ratio tertile.

Variable Model 1 Model 2 Model 3 Model 4

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Fasting glucagon-to-insulin-ratio
 Tertile 1 (n = 56) 3.35** (1.47 to 7.93) 3.33** (1.46 to 7.92) 2.86* (1.22 to 6.9) 2.68* (1.08 to 6.86)
 Tertile 2 (n = 57) 2.76* (1.23 to 6.4) 2.79* (1.23 to 6.53) 2.59* (1.13 to 6.15) 2.21 (0.91 to 5.45)
 Tertile 3 (n = 58) Ref (1.00) Ref (1.00) Ref (1.00) Ref (1.00)
Postprandial glucagon-to-insulin ratio
 Tertile 1 (n = 53) 3.57** (1.49 to 8.89) 3.56** (1.49 to 8.88) 3.48** (1.42 to 8.86) 2.72* (1.03 to 7.35)
 Tertile 2 (n = 53) 3.44** (1.45 to 8.44) 3.44** (1.45 to 8.46) 3.38** (1.39 to 8.52) 2.53 (0.99 to 6.64)
 Tertile 3 (n = 54) Ref (1.00) Ref (1.00) Ref (1.00) Ref (1.00)

OR: odds ratio; CI: confidence interval; BMI: body mass index.
Model 1: no adjustment.
Model 2: Model 1 plus age, sex.
Model 3: Model 2 plus diabetes mellitus duration and insulin treatment.
Model 4: Model 3 plus overweight (BMI ⩾ 23).
*p < 0.05; **p < 0.01.
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ratio may reflect hyperinsulinaemia or insulin resistance, 
but relatively lower glucagon levels were associated with 
NAFLD. The lower is the ratio, the greater is the likeli-
hood of having NAFLD.

Very recently, a retrospective study using a large 
Canadian diabetes register investigated changes in ALT 
levels as a marker of NAFLD among subjects initiated on 
SGLT2 inhibitors and incretin agents in comparison to a 
reference control group.34 That study showed that SGLT2 
inhibitors were associated with significantly greater 
reduction in ALT compared to incretin therapies inde-
pendent of weight and HbA1c change. Ferrannini et al.35 
and Hansen et al.36 explained that the opposing effects of 
SGLT2 inhibitors and incretin agents on insulin–gluca-
gon ratio may be a possible mechanism. Whereas SGLT2 
inhibitors lead to glucagon stimulation leading to a fall in 
insulin–glucagon ratio, incretin agents lead to glucagon 
suppression and insulin stimulation, resulting in a rise in 
the insulin–glucagon ratio. Although there were no sig-
nificant differences in the prescription of SGLT2 inhibi-
tors and DPP4 inhibitors in our study, their study result is 
in line with our study results and hypothesis. Future 
works are needed to investigate the mechanistic link 
regarding GI ratio and NAFLD by randomized, prospec-
tive studies comparing drugs such as SGLT2 inhibitors 
and incretin agents affecting GI ratio in T2DM subjects 
with NAFLD.

It has been suggested that an increase in GI ratio is an 
important determinant of the hyperglycaemia seen in indi-
viduals with T2DM.19 Increased GI ratio may reflect insu-
linopenia or relative hyperglucagonaemia. Consistent with 
a previous study, this study showed that higher postpran-
dial GI ratio was positively correlated with HbA1c, FBG 
and HDL-C levels.20,21 In patients with pancreatic cancer, 
GI ratio after a 75-g oral glucose challenge was indepen-
dently correlated with HbA1c level.22 In addition, appro-
priate choice of drugs for T2DM can be determined 
according to the glucagon response or change in absolute 
glucagon or GI ratio after glucose lowering drugs.4

Our study showed that fasting and postprandial GI 
ratios were negatively correlated with BMI, VFT and SFT. 
Higher GI ratio representing relative high glucagon level 
or lower insulin level may suggest less insulin resistance, 
so it had lower BMI and VFT, and SFT. This is in line with 
previous findings showing lower GI in participants with 
higher BMI.20 Physiologically, exogenous glucagon 
reduces lipoprotein via the glucagon receptor with stimu-
lated fatty acid oxidation and less adiposity.37 However, GI 
ratio and its relation to adiposity measured by VFT and 
SFT never have been reported. Recently, only one study 
revealed an opposing result that high plasma glucagon 
level correlates with waist-to-hip ratio, suprailiac skinfold 
thickness and deep subcutaneous abdominal and intraperi-
toneal adipose tissue depots in nonobese Asian Indian men 
with T2DM.32 They assessed subcutaneous and visceral 

adiposity using whole-body dual-energy X-ray absorpti-
ometry (DEXA) and magnetic resonance imaging (MRI) 
and its relation with glucagon level not with GI ratio.

This study showed significant difference of mean eGFR 
according to GI ratio. The role of glucagon in the kidney is 
known to regulate the GFR, urea excretion and electrolyte 
excretion.38 These changes were shown at relatively high 
doses of glucagon and were more evident in diabetes, pos-
sibly due to the modified GI ratio.39

The strength of this study is that it is the first report on 
the association of serum GI ratio and NAFLD as identi-
fied on US in participants with T2DM. Nevertheless, 
there are limitations to our study. First, we cannot deter-
mine any causative relationship between GI ratio and 
NAFLD due to the cross-sectional nature of the study. 
Second, because most study subjects were hospitalized 
participants admitted due to poor glucose control, there 
may be some concern over the accuracy of measurement 
of glucagon and insulin, and the results may not represent 
the entire population with diabetes. In addition, there was 
no comparator group without T2DM in this study. Third, 
postprandial insulin and glucagon were not measured 
after oral glucose tolerance test but after a normal meal, 
which means calorie and nutrient intakes may have varied 
from subject to subject. Fourth, study subjects with vari-
ous medications, in particular DPP4 inhibitor, could be 
another limitation as well, because incretin-based thera-
pies might affect serum level of glucagon.4 However, sta-
tistical significance was still prominent after adjusting for 
medication including insulin treatment. Fifth, we did not 
evaluate the incretin hormones that affect glucagon.40 In 
addition, the limited number of subjects in the studies 
increases the risk of type 2 errors. However, previous 
studies were mainly animal studies or human studies with 
less than 100 patients. Finally, we assessed NAFLD by 
ultrasound, which can only detect steatosis involving 
more than 20%–30% of hepatocytes. In theory, we may 
have overlooked low-degree steatosis because we did not 
perform liver biopsies.

In conclusion, this study showed that the fasting and 
postprandial GI ratios were significantly associated with the 
presence of NAFLD on US. Our results suggest that lower 
glucagon relative insulin may be independently associated 
with NAFLD in participants with type 2 diabetes. We cau-
tiously speculate that GI ratio could be a useful marker for 
diagnosis of NAFLD in participants with T2DM.
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Effects of magnitude of visceral adipose 
tissue reduction: Impact on insulin 
resistance, hyperleptinemia and 
cardiometabolic risk in adolescents  
with obesity after long-term  
weight-loss therapy
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Abstract
Aim: To investigate the association between visceral adipose tissue loss and insulin resistance and hyperleptinemia in 
adolescents with obesity submitted to interdisciplinary weight-loss therapy.
Methods: A total of 172 post-pubertal adolescents (body mass index greater than the 95th percentile of the Centers for 
Disease Control and Prevention reference growth charts) were recruited for the study. The adolescents were assigned 
to long-term weight-loss therapy. Body composition, visceral and subcutaneous fat, glucose metabolism, lipid profile, 
hepatic enzymes and leptin concentration were measured. After the therapy, the adolescents were allocated to three 
different groups according to the tertile of visceral fat reduction.
Results: Positive effects on body composition were observed in all analysed groups independent of visceral fat reduction. 
It was found that visceral fat was an independent predictor of insulin resistance in the investigated population. Obese 
adolescents who lost a higher proportion of visceral adipose tissue (>1.8 cm) demonstrated improved metabolic and 
inflammatory parameters twice as much than those who presented smaller losses. Positive correlations between visceral 
fat reduction and glucose metabolism, lipid profile, hepatic enzymes and homeostasis model assessment of insulin 
resistance index were demonstrated.
Conclusion: The magnitude of the reduction in visceral fat was an independent predictor of insulin resistance, 
hyperleptinemia and metabolic disorders related to obese adolescents.
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Introduction

In his 1988 Banting Lecture, Dr Gerald Reaven1,2 pre-
sented the theory that insulin resistance played a key role 
in the aetiology and prognosis of a group of linked meta-
bolic diseases, including, diabetes, hypertension and car-
diovascular diseases. He named this group of symptoms 
‘Syndrome X’, which later became known as metabolic 
syndrome (MetS). This has since been extensively studied 
in different conditions in the elderly, adults, adolescents 
and children.3–6

In addition, Dr Reaven2 suggested that insulin resist-
ance presenting compensatory hyperinsulinemia could 
lead not only to pathogenesis of noninsulin-dependent dia-
betes mellitus (NIDDM) but also to an increase in the risk 
of coronary heart disease (CHD).

To corroborate this, he presented an in-depth discussion 
of the mechanisms involved in Syndrome X, which result 
in an increased risk of cardiovascular disease (insulin 
resistance, compensatory hyperinsulinemia, glucose intol-
erance, increased triglycerides (TGs) and reduced high-
density lipoprotein (HDL) cholesterol concentration). In 
addition, he extensively investigated insulin resistance 
syndrome and showed that a large cohort of metabolic 
abnormalities associated with insulin resistance/hyperin-
sulinemia can lead to numerous clinical manifestations, 
including type 2 diabetes, hypertension, cardiovascular 
disease, polycystic ovary syndrome, non-alcoholic fatty 
liver disease (NAFLD), certain types of cancer and sleep 
apnea.7–10 MetS involves a variety of altered metabolic and 
inflammatory processes, including increases in visceral 
adiposity. The identification of individuals with this condi-
tion is important so that interventions can target lifestyle 
changes to decrease not only the incidence of diabetes but 
also the risk of developing cardiovascular disease.11 Our 
research team has already started to develop a multicom-
ponent therapy trying to help adolescents with obesity 
recover their health, taking into account the multifactorial 
components involved in the aetiology of obesity and its 
comorbidities.12 In this respect, we found that they pre-
sented high prevalences of insulin resistance (about 70%), 
dyslipidemias, carotid intima media thickness (cIMT) 
alterations, hyperleptinemia and hypoadiponectinemia, 
resulting in an increased prevalence of MetS13,14 with 
almost 30% of the adolescents having a diagnosis of 
MetS.14,15 Interestingly, there was a higher prevalence of 
NAFLD in adolescents with obesity, reaching 40% and 
60% in girls and boys, respectively, aged between 14 and 
19 years.16

In addition, we were able to show that the most impor-
tant factors in the aetiology of MetS and NAFLD develop-
ment in these adolescents with obesity were insulin 
resistance and visceral adiposity.14,17 Moreover, de Lima 
Sanches et al.,13 showed that an improved insulin resistance 
index was an independent predictor of cIMT alterations in 

adolescents with obesity. In addition, Masquio et al.14 dem-
onstrated that the presence of MetS impaired the reduction 
in cIMT in adolescents with obesity and that hyperleptine-
mia correlated with the increased prevalence of NAFLD 
and the development of atherosclerosis.18

However, as far as we are aware, the association 
between visceral adipose tissue reduction and the impact 
on insulin resistance and hyperleptinemia, according to the 
level of reduction, has not been explored in adolescents 
with obesity analysed after long-term interdisciplinary 
weight-loss therapy.

Methods

Population

This study uses data collected between 2004 and 2012 by 
the obesity study group. A total of 172 post-pubertal obese 
adolescents aged 15–19 years of both genders (102 girls and 
70 boys) were recruited. The inclusion criteria were as fol-
lows: adolescents at Tanner stage five19, the presence of pri-
mary obesity and a body mass index (BMI) >95th percentile 
of the Centers for Disease Control and Prevention (CDC) 
reference growth charts.20 Non-inclusion criteria were the 
use of birth control pills, cortisone, anti-epileptic drugs, a 
history of renal disease, alcohol intake, smoking and sec-
ondary obesity due to endocrine disorders. The study was 
conducted following the principles of the Declaration of 
Helsinki and was approved by the Ethics Committee on 
Research at the Universidade Federal de São Paulo, 
UNIFESP (152.281), clinical trial Id: NCT01358773. All 
procedures were explained to those responsible for the vol-
unteers, and a free and informed consent form was signed.

Anthropometric measurements

The adolescents were weighed on a scale and after the ple-
thysmograph was used for body composition. (BOD POD 
equipment - Cosmed, Life Measurement Instruments, 
Concord, CA, USA), with patients wearing the minimum 
clothing possible, and height was measured using a stadi-
ometer (Sanny-model ES 2030). BMI was calculated by 
dividing the weight by height squared (kg/m²). Body com-
position, including fat mass (percentage and kilogrammes) 
and lean mass (percentage and kilogrammes) was obtained 
through air displacement plethysmography (BOD POD 
equipment). Waist circumference was obtained at the mid-
point between the last rib and iliac crest.21

Serum analysis

Blood samples were collected after an overnight fast in the 
outpatient clinic at approximately 08:00 h. After collec-
tion, the blood was centrifuged for 10 min at 5000 r/min 
and stored at −70°C for future analyses. The materials 
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used for collection were disposable and adequately 
labelled. Blood was collected by a skilled and qualified 
technician. Insulin resistance was assessed according to 
the homeostasis model assessment of insulin resistance 
(HOMA-IR) index. The HOMA-IR was calculated as the 
product of the fasting blood glucose and the immunoreac-
tive insulin (I) levels: [fasting blood glucose (mg/
dL) × fasting insulin (mU/L)]/405. The quantitative insu-
lin sensitivity check index (QUICKI) was calculated as [1/
(log(fasting insulin) + log(fasting glucose)]. Total choles-
terol (TC), TG, HDL, low-density lipoprotein (LDL), very 
low-density lipoprotein (VLDL) and hepatic enzymes 
were analysed using a commercial kit (CELM, Barueri, 
Brazil). Reference values adopted were as follows: glu-
cose (60–110 mg/dL), insulin (<20 lU/mL), aspartate ami-
notransferase (AST, 10–40 U/L), alanine aminotransferase 
(ALT, 10–35 U/L), and c-glutamyl transferase (GGT, 17–
30 U/L) as previously described by Sartorio et al.;22 
HOMA-IR (<3.16) according to Keskin et al.;23 QUICKI 
(>0.339) according to Schwimmer et al.;24 TC (<170 mg/
dL), TG (33–129 mg/dL), HDL cholesterol (>38 mg/dL), 
LDL cholesterol (<130 mg/dL), VLDL cholesterol (10–
50 mg/dL) according to Giuliano et al.25

The leptin concentration was measured using a com-
mercially available enzyme-linked immunosorbent assay 
kit from R&D Systems (Minneapolis, MN), according to 
the manufacturer’s instructions. Leptin values between 1 
and 20 ng/mL for males and between 4.9 and 24 ng/mL for 
females, as previously described by Gutin et al.,26 were 
adopted.

The ratios of the lipoprotein levels (TC/HDL and TG/
HDL) were calculated because these ratios have been 
described in the literature as predictors of cardiovascular 
disease and MetS in adults and in children.27–29

Visceral and subcutaneous adiposity 
measurements

The abdominal ultrasonography procedures and the meas-
urements of visceral and subcutaneous fat tissue and fatty 
liver were performed by the same physician, who was 
blinded to the subject assignment groups at baseline and at 
follow-up 1 year after the start of the therapy. This physi-
cian was a specialist in imaging diagnostics. A 3.5 MHz 
multifrequency transducer (broadband) was used to reduce 
the risk of misclassification. The intra-examination coef-
ficient of the variation for ultrasound (US) was 0.8%. 
US-determined subcutaneous fat was defined as the dis-
tance between the skin and the external face of the rectus 
abdominal muscle, and visceral fat was defined as the dis-
tance between the internal face of the same muscle and the 
anterior wall of the aorta. The cut-off points for the defini-
tion of visceral obesity by ultrasonography were based on 
the methodology previously described by Ribeiro-Filho 
et al.30

Descriptive methodology of interdisciplinary 
intervention

The interventions were conducted by an interdisciplinary 
group of health professionals. All adolescents performed 
the same tests both at the beginning and at the end of the 
study (Figure 1). Once each month, the adolescents visited 
the endocrinologist to evaluate the treatment. The adoles-
cents participated in three, 2-h supervised therapy sessions 
per week (on non-consecutive days) combining physical 
exercise, physiotherapy, nutritional advice sessions and 
psychological therapy for 1 year (Figure 1).

Clinical approach. All obese adolescents visited the endo-
crinologist with their parents once every month. The medi-
cal follow-up was based on the initial medical history and 
comprised a physical examination, and the measurement 
of blood pressure and body mass. The adherence of the 
adolescents to the interdisciplinary therapies was also 
assessed. The team discussed some possible changes in 
lifestyle to promote their health with the adolescents and 
their parents (Figure 1).

Physical exercise practice
Aerobic plus resistance training intervention. During 

the 1-year therapy period, the adolescents followed a 
combined physical exercise training therapy. The proto-
col was performed three times per week for 1 year and 
included 30 min of aerobic training plus 30 min of resist-
ance training per session. The subjects were instructed to 
reverse the order of the physical exercises (aerobic and 
resistance) at each training session. The aerobic training 
consisted of running on a motor-driven treadmill (Life 
Fitness – model TR 9700HR) or riding an exercise bicy-
cle at a cardiac frequency intensity representing ventila-
tory threshold 1 (VT1) (±4 bpm), which was determined 
by the results of an initial oxygen uptake test for aero-
bic exercises (ergoespirometry). The physical exercise 
therapy was based on the guidelines from the American 
College of Sports Medicine (ACSM).31 Resistance train-
ing was also designed based on ACSM recommendations 
(Figure 1).32

Nutrition counselling. Energy intake was set at the lev-
els recommended by the Institute of Medicine’s dietary 
reference intake (DRI) for subjects with low levels of 
physical activity of the same age and gender follow-
ing a balanced diet.33 No pharmacotherapies or anti-
oxidants were recommended. Once a week, adolescents 
had dietetics lessons educating participants on the food 
pyramid, were taught how to keep diet records and were 
given information on weight loss diets, fad diets, food 
labels, dietetics, fat-free foods, low-calorie foods and 
other related topics. They also had monthly individual 
consultations (Figure 1).
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Physiotherapy intervention. The adolescents were moni-
tored by a physiotherapist during the therapy in order to 
prevent musculoskeletal injuries. Once a week, the vol-
unteers had lessons regarding such topics as posture, the 
prevention of musculoskeletal injuries, diaphragmatic 
breathing, hydrotherapy, isostretching, and balance.

Psychological counselling. Psychological therapy treat-
ment plans were established based on validated question-
naires that considered some of the psychological problems 
caused by obesity, as described in the literature. These 
include depression, eating disorders, anxiety, decreased 
self-esteem and body image disorders. Interdisciplinary 
therapy consisted of a weekly 1-h group session. Individu-
alized psychological therapy was recommended when it 
was necessary according to the psychological assessment 
(Figure 1).

Statistical analysis

Statistical analysis was performed using the Statistica 12 
(StatSoft Inc, Tulsa, USA) software package. The adopted 
significant value was α ⩽ 5%. Data normality was verified 
with the Kolmogorov–Smirnov test. Data were expressed as 

mean ± standard deviation (SD). The effects of 1 year of 
interdisciplinary therapy were assessed using repeated 
measures analysis of variance (ANOVA) and Tukey post 
hoc test. Correlations were established through the Pearson’s 
test. Multivariate regression analysis was performed to look 
for independent predictors for insulin resistance.

After long-term weight-loss therapy, they were ana-
lysed according to the tertile of visceral fat reduction (delta 
values) – 1st tertile (high): more than 1.8 cm (n = 58); 2nd 
tertile (moderate): between 1.8 cm and 0.79 cm (n = 55); 
and 3rd tertile (low): less than or equal to 0.79 cm (n = 59).

Results

Baseline condition

Analysing the baseline condition, the adolescents were 
paired according to BMI and body fat mass as shown in 
Table 1. This is relevant information that highlights the 
homogeneity of the sample studied at the initial moment of 
the interventions. It justifies that the differences that were 
found between the groups at the final moment are depend-
ent on the effect of the therapy and the group evaluated, 
according the magnitude of reduction in visceral fat depot.

Figure 1. Methodological design.

12_DVR825343.indd   199 15/03/2019   12:05:15 PM



200 Diabetes & Vascular Disease Research 16(2)

T
ab

le
 1

. 
Ef

fe
ct

s 
of

 in
te

rd
is

ci
pl

in
ar

y 
In

te
rv

en
tio

n 
ac

co
rd

in
g 

to
 v

is
ce

ra
l f

at
 g

ro
up

 d
is

tr
ib

ut
io

n.

A
ll

H
ig

h 
gr

ou
p

M
od

er
at

e 
gr

ou
p

Lo
w

 g
ro

up

 
(n

 =
 1

72
)

(n
 =

 5
8)

(n
 =

 5
5)

(n
 =

 5
9)

 
Ba

se
lin

e 
af

te
r 

in
te

rv
en

tio
n

Ba
se

lin
e 

af
te

r 
in

te
rv

en
tio

n
Ba

se
lin

e 
af

te
r 

in
te

rv
en

tio
n

Ba
se

lin
e 

af
te

r 
in

te
rv

en
tio

n

Bo
dy

 m
as

s 
(k

g)
10

0.
56

 ±
 1

5.
01

92
.3

6 
±

 1
5.

03
d

10
1.

88
 ±

 1
4.

11
88

.2
2 
±

 1
3.

07
d

10
3.

34
 ±

 1
7.

52
95

.4
3 
±

 1
8.

03
d

96
.7

3 
±

 1
2.

80
93

.2
8 
±

 1
2.

86
d

BM
I (

kg
/m

²)
35

.9
8 
±

 4
.5

9
32

.9
1 
±

 4
.8

4d
36

.0
6 
±

 4
.1

7
30

.9
5 
±

 3
.8

2d
36

.4
2 
±

 5
.1

0
33

.5
7 
±

 5
.3

4d
35

.6
1 
±

 4
.5

1
34

.2
9 
±

 4
.6

9d

Bo
dy

 fa
t 

m
as

s 
(%

)
44

.0
9 
±

 6
.9

7
38

.0
2 
±

 8
.2

6d
44

.8
2 
±

 5
.9

0
35

.7
4 
±

 7
.3

5d
43

.1
6 
±

 8
.0

1
37

.2
0 
±

 9
.2

0d
44

.4
1 
±

 6
.8

5
41

.1
9 
±

 7
.2

9d

Le
an

 b
od

y 
m

as
s 

(%
)

56
.0

0 
±

 6
.9

1
61

.9
9 
±

 8
.2

5d
55

.1
8 
±

 5
.9

0
64

.2
6 
±

 7
.3

5d
57

.1
3 
±

 7
.8

0
62

.8
0 
±

 9
.1

9d
55

.6
0 
±

 6
.8

9
58

.8
1 
±

 7
.2

9d

Bo
dy

 fa
t 

m
as

s 
(k

g)
44

.5
0 
±

 1
0.

97
35

.6
0 
±

 1
1.

17
d

45
.8

8 
±

 1
0.

05
31

.8
7 
±

 9
.1

8d
44

.5
1 
±

 1
2.

87
36

.0
1 
±

 1
2.

86
d

43
.2

9 
±

 9
.9

9
38

.9
5 
±

 1
0.

28
d

Bo
dy

 le
an

 m
as

s 
(k

g)
56

.0
2 
±

 9
.2

7
56

.9
3 
±

 9
.4

7
56

.0
1 
±

 8
.4

1
56

.7
9 
±

 9
.1

5
58

.4
8 
±

 1
0.

77
59

.2
1 
±

 1
0.

83
53

.6
0 
±

 7
.9

9
54

.6
0 
±

 7
.8

0
W

ai
st

 c
ir

cu
m

fe
re

nc
e 

(c
m

)
10

1.
55

 ±
 1

0.
44

94
.6

6 
±

 1
1.

27
d

10
3.

23
 ±

 9
.3

5
91

.6
1 
±

 9
.8

1d
10

2.
21

 ±
 1

1.
14

95
.2

0 
±

 1
1.

47
d

98
.8

7 
±

 1
0.

61
97

.3
6 
±

 1
1.

96
V

is
ce

ra
l f

at
 (

cm
)

4.
41

 ±
 1

.5
2

3.
21

 ±
 1

.3
3d

5.
27

 ±
 1

.2
7

2.
65

 ±
 1

.0
6d

4.
48

 ±
 1

.5
4a

3.
22

 ±
 1

.5
0d

3.
52

 ±
 1

.2
1a

,b
3.

72
 ±

 1
.2

2c

Su
bc

ut
an

eo
us

 fa
t 

(c
m

)
3.

78
 ±

 0
.9

0
3.

20
 ±

 0
.9

1d
3.

75
 ±

 0
.8

4
3.

09
 ±

 0
.9

1d
3.

85
 ±

 1
.0

2
3.

20
 ±

 0
.9

3d
3.

79
 ±

 0
.8

2
3.

33
 ±

 0
.8

5d

G
lu

co
se

 (
m

g/
dL

)
90

.5
4 
±

 6
.5

4
90

.3
4 
±

 7
.4

0
90

.6
1 
±

 6
.5

1
87

.9
1 
±

 6
.6

4
89

.3
3 
±

 6
.8

3
91

.4
4 
±

 8
.0

6
91

.5
4 
±

 6
.2

4
91

.6
7 
±

 7
.0

1
In

su
lin

 (
uU

/m
L)

16
.6

4 
±

 9
.2

2
13

.1
2 
±

 8
.9

5d
17

.0
5 
±

 9
.2

3
11

.7
6 
±

 7
.2

4d
17

.0
7 
±

 1
1.

02
14

.5
8 
±

 1
2.

09
16

.0
0 
±

 7
.2

9
13

.2
1 
±

 6
.4

9
H

O
M

A
-IR

3.
74

 ±
 2

.2
1

3.
00

 ±
 2

.3
7d

3.
80

 ±
 1

.9
7

2.
58

 ±
 1

.6
0d

3.
86

 ±
 2

.8
7

3.
44

 ±
 3

.3
8

3.
62

 ±
 1

.7
0

3.
03

 ±
 1

.6
9

Q
U

IC
K

I
0.

32
 ±

 0
.0

2
0.

34
 ±

 0
.0

3d
0.

32
 ±

 0
.0

2
0.

34
 ±

 0
.0

3d
0.

32
 ±

 0
.0

2
0.

33
 ±

 0
.0

3d
0.

32
 ±

 0
.0

2
0.

33
 ±

 0
.0

2
T

ot
al

 c
ho

le
st

er
ol

 (
m

g/
dL

)
16

4.
89

 ±
 3

3.
04

15
5.

51
 ±

 2
9.

64
d

17
0.

25
 ±

 3
6.

72
15

6.
63

 ±
 3

1.
14

d
16

5.
53

 ±
 2

9.
77

15
8.

65
 ±

 3
1.

21
d

16
0.

00
 ±

 3
1.

51
15

1.
87

 ±
 2

6.
41

H
D

L 
ch

ol
es

te
ro

l (
m

g/
dL

)
45

.5
1 
±

 8
.9

1
47

.3
1 
±

 1
0.

02
d

44
.0

7 
±

 9
.4

9
45

.2
1 
±

 9
.3

7
44

.1
1 
±

 8
.5

5
46

.7
2 
±

 9
.9

0d
48

.2
4 
±

 8
.2

2
50

.0
7 
±

 1
0.

42
LD

L 
ch

ol
es

te
ro

l (
m

g/
dL

)
98

.7
8 
±

 2
8.

68
90

.5
5 
±

 2
5.

29
d

10
5.

26
 ±

 3
3.

87
94

.1
8 
±

 2
7.

96
d

98
.9

8 
±

 2
2.

82
94

.0
6 
±

 2
5.

23
92

.9
8 
±

 2
6.

95
83

.7
5 
±

 2
1.

31
d

V
LD

L 
ch

ol
es

te
ro

l (
m

g/
dL

)
20

.5
1 
±

 1
0.

28
17

.6
5 
±

 9
.2

7d
20

.8
4 
±

 9
.5

8
17

.2
3 
±

 8
.6

9d
21

.3
9 
±

 1
0.

36
17

.8
7 
±

 9
.2

8d
19

.5
5 
±

 1
0.

92
18

.0
5 
±

 9
.9

2
T

ri
gl

yc
er

id
es

 (
m

g/
dL

)
10

4.
54

 ±
 6

0.
59

87
.9

7 
±

 4
6.

01
d

10
4.

19
 ±

 4
8.

00
86

.1
4 
±

 4
2.

86
d

11
4.

40
 ±

 7
6.

86
89

.0
4 
±

 4
6.

45
d

96
.6

9 
±

 5
3.

70
89

.7
1 
±

 4
9.

24
T

C
/H

D
L

3.
74

 ±
 1

.0
1

3.
41

 ±
 0

.9
0d

4 
±

 1
.1

2
3.

57
 ±

 0
.9

1d
3.

85
 ±

 0
.8

9
3.

52
 ±

 0
.9

9d
3.

41
 ±

 0
.9

0
3.

13
 ±

 0
.7

6d

T
G

/H
D

L
2.

46
 ±

 1
.6

4
0.

55
 ±

 0
.2

3d
2.

59
 ±

 1
.5

5
0.

55
 ±

 0
.2

6d
2.

72
 ±

 1
.9

4
0.

54
 ±

 0
.1

9d
2.

31
 ±

 1
.3

8
0.

57
 ±

 0
.2

4d

A
ST

 e
nz

ym
e 

(U
/L

)
24

.7
4 
±

 8
.1

7
23

.4
2 
±

 1
4.

27
25

.0
7 
±

 8
.1

0
21

.7
3 
±

 6
.2

8d
24

.5
6 
±

 7
.4

6
22

.2
2 
±

 6
.1

7
24

.2
6 
±

 8
.7

1
26

.3
6 
±

 2
3.

06
A

LT
 e

nz
ym

e 
(U

/L
)

31
.4

9 
±

 1
8.

46
26

.7
3 
±

 1
8.

37
d

32
.7

7 
±

 2
3.

66
24

.5
9 
±

 1
4.

93
30

.1
8 
±

 1
3.

14
25

.9
6 
±

 1
2.

85
31

.6
7 
±

 1
7.

24
29

.9
1 
±

 2
4.

97
G

G
T

 e
nz

ym
e 

(U
/L

)
25

.5
2 
±

 1
5.

11
20

.2
2 
±

 9
.7

7d
27

.9
3 
±

 2
2.

11
20

.9
3 
±

 1
1.

01
d

25
.8

9 
±

 1
1.

61
20

.5
4 
±

 9
.5

5d
23

.0
7 
±

 7
.5

5
19

.3
6 
±

 8
.6

8
Le

pt
in

 (
ng

/m
L)

37
.7

4 
±

 2
4.

30
24

.8
6 
±

 1
9.

83
d

37
.5

8 
±

 2
7.

10
19

.0
3 
±

 1
7.

24
d

35
.7

0 
±

 2
4.

25
24

.9
3 
±

 2
1.

75
d

40
.3

4 
±

 2
1.

51
32

.2
4 
±

 1
8.

80

BM
I: 

bo
dy

 m
as

s 
in

de
x;

 H
O

M
A

-IR
: h

om
eo

st
as

is
 m

od
el

 a
ss

es
sm

en
t 

in
su

lin
 r

es
is

ta
nc

e;
 Q

U
IC

K
I: 

qu
an

tit
at

iv
e 

in
su

lin
 s

en
si

tiv
ity

 c
he

ck
 in

de
x;

 H
LD

: h
ig

h-
de

ns
ity

 li
po

pr
ot

ei
n;

 L
D

L:
 lo

w
-d

en
si

ty
 li

po
pr

ot
ei

n;
 

V
LD

L:
 v

er
y 

lo
w

-d
en

si
ty

 li
po

pr
ot

ei
n;

 T
C

/H
D

L:
 t

ot
al

 c
ho

le
st

er
ol

/h
ig

h-
de

ns
ity

 li
po

pr
ot

ei
n 

ra
tio

; T
G

/H
D

L:
 t

ri
gl

yc
er

id
e/

hi
gh

-d
en

si
ty

 li
po

pr
ot

ei
n 

ra
tio

; A
ST

: a
sp

ar
ta

te
 a

m
in

ot
ra

ns
fe

ra
se

; A
LT

: a
la

ni
ne

 a
m

in
o-

tr
an

sf
er

as
e;

 G
G

T
: c

-g
lu

ta
m

yl
 t

ra
ns

fe
ra

se
.

R
ef

er
en

ce
 v

al
ue

s:
 g

lu
co

se
 (

60
–1

10
 m

g/
dL

), 
in

su
lin

 (
<

20
 lU

/m
L)

, A
ST

 (
10

–4
0 

U
/L

), 
A

LT
 (

10
–3

5 
U

/L
) 

an
d 

G
G

T
 (

17
–3

0 
U

/L
) 

as
 p

re
vi

ou
sl

y 
de

sc
ri

be
d 

by
 S

ar
to

ri
o 

et
 a

l.;
22

 H
O

M
A

-IR
 (
<

3.
16

) 
ac

co
rd

in
g 

K
es

ki
n 

et
 a

l.;
23

 Q
U

IC
K

I (
>

0.
33

9)
 a

cc
or

di
ng

 t
o 

Sc
hw

im
m

er
 e

t 
al

.;2
4  

to
ta

l c
ho

le
st

er
ol

 (
<

17
0 

m
g/

dL
), 

T
G

 (
33

–1
29

 m
g/

dL
), 

H
D

L 
ch

ol
es

te
ro

l (
>

38
 m

g/
dL

), 
LD

L 
ch

ol
es

te
ro

l (
<

13
0 

m
g/

dL
), 

V
LD

L 
ch

ol
es

te
ro

l 
(1

0–
50

 m
g/

dL
) 

ac
co

rd
in

g 
to

 G
iu

lia
no

 e
t 

al
.25

 L
ep

tin
 v

al
ue

s 
be

tw
ee

n 
1 

an
d 

20
 n

g/
m

L 
fo

r 
m

al
es

 a
nd

 b
et

w
ee

n 
4.

9 
an

d 
24

 n
g/

m
L 

fo
r 

fe
m

al
es

 w
er

e 
ad

op
te

d 
as

 p
re

vi
ou

sl
y 

de
sc

ri
be

d 
by

 G
ut

in
 e

t 
al

.26
 S

ta
tis

tic
al

 
te

st
 a

pp
lie

d 
A

N
O

V
A

-t
w

o 
w

ay
 p

os
t 

ho
c 

T
uk

ey
.

a S
ta

tis
tic

al
 d

iff
er

en
ce

 o
f h

ig
h 

gr
ou

p 
in

 b
as

el
in

e.
b S

ta
tis

tic
al

 d
iff

er
en

ce
 o

f m
od

er
at

e 
gr

ou
p 

in
 b

as
el

in
e 

co
nd

iti
on

.
c S

ta
tis

tic
al

 d
iff

er
en

ce
 o

f h
ig

h 
gr

ou
p 

in
 a

ft
er

 in
te

rv
en

tio
n.

d S
ta

tis
tic

al
 d

iff
er

en
ce

 b
et

w
ee

n 
va

lu
es

 a
t 

ba
se

lin
e 

an
d 

af
te

r 
in

te
rv

en
tio

n.

12_DVR825343.indd   200 15/03/2019   12:05:16 PM



Campos et al. 201

Effects of interdisciplinary intervention

All sample. Considering the total sample (n = 172), there 
were a statistically significant reduction in body mass (kg), 
BMI (kg/m²), body fat mass (% and kg), waist circumfer-
ence (cm), visceral fat (cm), subcutaneous fat (cm), insulin 
(µU/mL), HOMA-IR, TC (mg/dL), LDL cholesterol (mg/
dL), VLDL cholesterol (mg/dL), TGs (mg/dL), TC/HDL 
ratio, TG/HDL ratio, ALT enzyme (U/L), GGT enzyme 
(U/L) and leptin concentration (ng/mL). On the other 
hand, there were statistically significant increases in lean 
body mass (%), QUICKI and HDL cholesterol (mg/dL). 
For lean body mass (kg), glucose (mg/dL) and AST 
enzyme (U/L) no statistically significant changes were 
observed (Table 1).

High group (1st tertile: >1.8 cm). Similarly to the all sample 
analysis, in the high group, there was a statistically signifi-
cant reduction in body mass (kg), BMI (kg/m²), body fat 
mass (% and kg), waist circumference (cm), visceral fat 
(cm), subcutaneous fat (cm), insulin (µU/mL), HOMA-IR, 
TC (mg/dL), LDL cholesterol (mg/dL), VLDL cholesterol 
(mg/dL), TGs (mg/dL), TC/HDL ratio, TG/HDL ratio, 
AST enzyme (U/L), GGT enzyme (U/L) and leptin con-
centration (ng/mL). In addition, it is important to note that 
only in this group was the hyperleptinemia state normal-
ized. On the other hand, there was a statistically significant 
increase in lean body mass (%) and QUICKI. For lean 
body mass (kg), glucose (mg/dL), HDL cholesterol (mg/
dL) and ALT enzyme (U/L) no statistically significant 
changes were observed (Table 1).

Moderate group (2nd tertile: between 1.8 and 0.79 cm). In 
the moderate group, there was a statistically significant 
reduction in body mass (kg), BMI (kg/m²), body fat mass 
(% and kg), waist circumference (cm), visceral fat (cm), 
subcutaneous fat (cm), TC (mg/dL), VLDL cholesterol 
(mg/dL), TGs (mg/dL), TC/HDL ratio, TG/HDL ratio, 
GGT enzyme (U/L) and leptin concentration (ng/mL). 
Although, this hormone was not normalized. On the other 
hand, there was a statistically significant increase in lean 
body mass (%), QUICKI and HDL cholesterol (mg/dL). 
For lean body mass (kg), glucose (mg/dL), insulin (µU/
mL), HOMA-IR, LDL cholesterol (mg/dL), AST enzyme 
(U/L) and ALT enzyme (U/L) no statistically significant 
changes were observed (Table 1).

Low group (3rd tertile: less than or equal 0.79 cm). In the low 
group, there was a statistically significant reduction in body 
mass (kg), BMI (kg/m²), body fat mass (% and kg), subcu-
taneous fat (cm), LDL cholesterol (mg/dL), TC/HDL ratio 
and TG/HDL ratio. On the other hand, there was a statisti-
cally significant increase in lean body mass (%) and vis-
ceral fat (cm). For lean body mass (kg), waist circumference 
(cm), glucose (mg/dL), insulin (µU/mL), HOMA-IR, 

QUICKI, TC (mg/dL), HDL cholesterol, VLDL cholesterol 
(mg/dL), TGs (mg/dL), and AST enzyme (U/L), ALT 
enzyme (U/L), GGT enzyme (U/L) and leptin concentra-
tion (ng/mL) no statistically significant changes were 
observed (Table 1).

Analysing the delta values. According to the delta values 
analysed, it is possible to note a greater effectiveness of 
high group than the moderate and low groups in promoting 
a reduction in body mass (kg), body fat mass (% and kg), 
visceral fat (cm) and leptin concentration (ng/mL). Inter-
estingly, the programme was more effective in the high 
group in respect of improved BMI (kg/m²) and QUICKI 
than in the moderate group. For the variables lean body 
mass (kg), waist circumference (cm), subcutaneous fat 
(cm), glucose (mg/dL), insulin (µU/mL), HOMA-IR, TC 
(mg/dL), HDL cholesterol (mg/dL), LDL cholesterol (mg/
dL), VLDL cholesterol (mg/dL), TGs (mg/dL), TC/HDL 
ratio, TG/HDL ratio, AST, ALT and GGT enzymes no sig-
nificant differences were observed (Table 2).

Multivariate logistic regression analysis. In the regression 
analysis of the total sample, both visceral fat and BMI 
were predictors of increased insulin resistance. Moreover, 
for the high and moderate groups, the regression model 
demonstrated that only visceral fat was an independent 
predictor of an increase in the insulin resistance index 
(HOMA-IR). Considering the low group, only BMI (kg/
m²) was an independent predictor of an increase in the 
insulin resistance index (HOMA-IR) (Table 3).

Correlations analysis. Performing the correlation analysis, 
as demonstrated in Figure 2(a) to (d), visceral fat (cm) was 
positively correlated with glucose (mg/dL): r = 0.22, 
p = 0.001; insulin (µU/L): r = 0.38, p = 0.0001 and HOMA-
IR: r = 0.40, p = 0.001. Moreover, negative correlations 
were found between visceral fat and QUICKI: r = –0.38, 
p = 0.0001. Considering the lipid profile, as shown in Fig-
ure 3(a) to (d), there were positive correlations between 
visceral fat (cm) and TC (mg/dL): r = 0.23, p = 0.006; LDL 
cholesterol (mg/dL): r = 0.22, p = 0.01; VLDL cholesterol 
(mg/dL): r = 0.26, p = 0.002 and TGs (mg/dL): r = 0.26, 
p = 0.002. Regarding the hepatics enzymes, as shown in 
Figure 4(a) to (d), there were positive correlations between 
visceral fat (cm) and AST enzyme (U/L): r = 0.35, 
p = 0.0001; ALT enzyme (U/L): r = 0.37, p = 0.0001 and 
GGT enzyme (U/L): r = 0.46, p = 0.0001.

Discussion

This study aimed to investigate the impact of visceral adi-
pose tissue reductions, analysed in terms of their magnitude, 
on insulin resistance and hyperleptinemia in a sample of 
adolescents with obesity. Interestingly, the most important 
finding was that a greater reduction in visceral adipose 
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Table 2. Comparison of delta values among visceral fat groups.

All high group moderate group low group

 (n = 172) (n = 58) (n = 55) (n = 59)

Body mass (kg) −11.87 ± 21.88 −18.30 ± 22.04 −7.76 ± 20.73a −9.64 ± 21.89a

BMI (kg/m²) −4.41 ± 7.96 −6.74 ± 7.56 −2.79 ± 7.75a −3.72 ± 8.18
Body fat mass (%) −7.34 ± 9.73 −10.96 ± 8.56 −5.85 ± 9.78a −5.32 ± 9.96a

Lean body mass (%) 4.08 ± 14.91 5.70 ± 15.93 6.61 ± 14.18 0.13 ± 14.08a

Body fat mass (kg) −9.76 ± 11.54 −15.69 ± 9.62 −7.54 ± 12.87a −6.20 ± 9.77a

Body lean mass (kg) −0.74 ± 14.60 −2.22 ± 17.67 1.78 ± 14.03 −1.68 ± 11.52
Waist circumference (cm) −12.81 ± 58.92 −21.24 ± 57.50 −12.91 ± 50.58 −4.42 ± 67.22
Visceral fat (cm) −1.21 ± 1.36 −2.63 ± 0.82 −1.26 ± 0.28a 0.20 ± 0.83a,b

Subcutaneous fat (cm) −0.62 ± 0.81 −0.66 ± 0.78 −0.73 ± 0.89 −0.47 ± 0.74
Glucose (mg/dL) −2.84 ± 17.21 −4.25 ± 13.89 0.45 ± 14.78 −4.62 ± 21.71
Insulin (uU/mL) −4.01 ± 9.71 −5.50 ± 9.15 −2.75 ± 12.60 −3.76 ± 6.70
HOMA-IR −0.86 ± 2.47 −1.27 ± 2.03 −0.48 ± 3.45 −0.82 ± 1.60
QUICKI 0.00 ± 0.07 0.02 ± 0.05 0.01 ± 0.06a −0.01 ± 0.09
Total cholesterol (mg/dL) −13.91 ± 33.53 −16.37 ± 31.45 −9.76 ± 24.78 −15.86 ± 41.98
HDL cholesterol (mg/dL) 0.45 ± 10.04 0.35 ± 9.30 1.76 ± 7.93 −0.71 ± 12.38
LDL cholesterol (mg/dL) −10.12 ± 24.95 −12.74 ± 23.16 −4.84 ± 24.67 −12.95 ± 26.50
VLDL cholesterol (mg/dL) −3.08 ± 9.81 −3.91 ± 7.58 −3.45 ± 11.18 −1.91 ± 10.47
Triglycerides (mg/dL) −19.07 ± 50.40 −19.56 ± 37.87 −26.98 ± 60.26 −11.27 ± 50.99
TC/HDL −0.33 ± 0.53 −0.43 ± 0.52 −0.33 ± 0.58 −0.24 ± 0.46
TG/HDL −1.90 ± 1.53 −2.03 ± 1.39 −2.1 ± 1.84 −150, ± 1.26
AST enzyme −1.86 ± 15.07 −3.72 ± 7.24 −2.75 ± 7.32 −8.61 ± 23.53
ALT enzyme −5.4 ± 18.95 −8.61 ± 17.56 −4.69 ± 10.18 −3.00 ± 25.57
GGT enzyme −5.82 ± 10.89 −7.37 ± 15.17 −5.73 ± 8.04 −4.46 ± 7.76
Leptin (ng/mL) −8.62 ± 22.80 −15.62 ± 25.56 −9.28 ± 19.47a 0.83 ± 19.65a

BMI: body mass index; HOMA-IR: homeostasis model assessment insulin resistance; QUICKI: quantitative insulin sensitivity check index; HLD: high-
density lipoprotein; LDL: low-density lipoprotein; VLDL: very low-density lipoprotein; TC/HDL: total cholesterol/high-density lipoprotein ratio; TG/
HDL: triglycerides/high-density lipoprotein ratio; AST: aspartate aminotransferase; ALT: alanine aminotransferase; GGT: c-glutamyl transferase.
Statistical test applied ANOVA-one way post hoc Tukey.
aStatistical difference compared to high group.
bStatistical difference compared to moderate group.

Table 3. Multivariate logistic regression analysis of association between insulin resistance and body composition parameters.

Variables 95% CI p value

OR Lower Upper

Total sample

Visceral fat (cm) 1.604 1.303 1.975 0.0001
Lean body mass (%) 0.698 0.003 146.86 0.895
Body fat mass (%) 0.692 0.003 147.28 0.893
BMI (kg/m²) 1.149 1.056 1.249 0.001

High group

Visceral fat (cm) 1.876 1.246 2.798 0.002
Lean body mass (%) 0.001 10−11 104.243 0.423
Body fat mass (%) 0.001 10−11 147.86 0.422
BMI (kg/m²) 1.07 0.922 1.241 0.375

Moderate group

Visceral fat (cm) 2.567 1.676 3.931 0.0001
Lean body mass (%) 1.03 0.934 1.135 0.55

 (Continued)
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Figure 2. Correlations of visceral fat with: (a) glucose (mg/dL): r = 0.22, p = 0.001; (b) insulin (μU/L): r = 0.38, p = 0.0001; (c) 
HOMA-IR: r = 0.40, p = 0.001 and (d) QUICKI: r = –0.38, p = 0.0001.

Variables 95% CI p value

OR Lower Upper

Body fat mass (%) 1 0.989 1.354 _
BMI (kg/m²) 1.157 0.922 _ 0.069

Low group

Visceral fat (cm) 1.068 0.745 1.53 0.722
Lean body mass (%) 1.324 0.014 126.81 0.904
Body fat mass (%) 1.321 0.013 130.27 0.905
BMI (kg/m²) 1.207 1.072 1.36 0.002

Statistical significance is bold in the Table. BMI: body mass index; CI: confidence interval; OR: odds ratio; HOMA-IR: homeostasis model assessment 
insulin resistance. Multivariate logistic regression analysis was realized considering HOMA-IR as a dependent variable. The analysis was performed in 
different conditions: all sample; high group, moderate group and low group.
BMI: body mass index; CI: confidence interval; OR: odds ratio; HOMA-IR: homeostasis model assessment insulin resistance.
Model considering HOMA-IR as a dependent variable. All sample (n = 172). BMI: body mass index (kg/m²).
Model considering HOMA-IR as a dependent variable. Only high group considered in the analysis. BMI: body mass index (kg/m²).
Model considering HOMA-IR as a dependent variable. Only moderate group considered in the analysis. BMI: body mass index (kg/m²).
Model considering HOMA-IR as a dependent variable. Only low group considered in the analysis. BMI: body mass index (kg/m²).

tissue (>1.8 cm; according to the delta value analysis) was a 
cut-off point to obtain a significant decrease in insulin resist-
ance and normalization of leptin concentration (Table 1).

Corroborating this, the multivariate logistic analysis 
showed that increased visceral fat is an independent 

predictor of increased insulin resistance in the groups with 
a high and moderate reduction of adipose deposits (Table 
3). In a previous investigation, it was shown that improved 
HOMA-IR was an independent predictor of cIMT altera-
tions in a sample of adolescents with obesity.13 In fact, in 

Table 3. (Continued)
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Figure 3. Correlations of visceral fat with: (a) total cholesterol (mg/dL): r = 0.23, p = 0.006; (b) LDL cholesterol (mg/dL): r = 0.22, 
p = 0.01; (c) VLDL cholesterol (mg/dL): r = 0.26, p = 0.002 and (d) triglycerides (mg/dL): r = 0.26, p = 0.002.

Figure 4. Correlations of visceral fat with: (a) AST enzyme (U/L): r = 0.35, p = 0.0001; (b) ALT enzyme (U/L): r = 0.37, p = 0.0001 
and (c) GGT enzyme (U/L): r = 0.46, p = 0.0001.
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this investigation, there was only a significant decrease in 
insulin resistance and insulin concentration in the group 
which presented a higher reduction in visceral fat after 
long-term interdisciplinary weight-loss therapy occurs.

Remarkably, our data indicate that when adolescents 
with obesity have a high or moderate decrease in the vis-
ceral adipose tissue, there are improvements in 20 and 16 
analysed variables, respectively, including body composi-
tion and glucose and lipid metabolism. However, when 
there was only a small reduction in visceral adipose tissue, 
there were only improvements in nine parameters (Table 1).

These results show that reduced visceral adipose tissue 
after long-term weight-loss therapy is a key factor in the 
control of insulin resistance and a range of metabolic condi-
tions, looking at a sample of obese adolescents with similar 
body mass, BMI, body fat and subcutaneous fat at baseline, 
as shown in Table 1. This strongly corroborates the thesis of 
Dr Reaven34–36 regarding insulin resistance as a key aspect 
in the development of many chronic diseases. Our research 
suggests that if these conditions are not treated early on in 
obese adolescents, they may develop not only insulin resist-
ance but also MetS,15 NAFLD,37 sleep apnea,38 bone metab-
olism39 and cardiovascular disease.13

The present study showed the key role of visceral fat in 
the modulation of metabolic and hormonal conditions in a 
sample of adolescents with obesity, including positive cor-
relations with TC, LDL cholesterol, VLDL cholesterol, 
TGs, glucose, insulin, HOMA-IR and hepatic enzymes. 
Moreover, negative correlations between visceral fat were 
observed with the insulin sensitivity index (QUICKI) 
(Figures 2 to 4). The data demonstrate the intrinsic link 
between high visceral fat and insulin resistance in adoles-
cents with obesity, which may lead to the development of 
metabolic alterations and a consequent increase in cardio-
vascular risk in this population.13,17,40

In addition, it is important to note that leptin levels, a 
potent biomarker of energy balance and inflammatory pro-
cesses related to obesity, were significantly lower after both 
high and moderate reductions in visceral adipose tissue. In 
the group presenting a high reduction of visceral fat, the 
leptin values reached normal concentrations, while the ado-
lescents with a moderate reduction continued to present 
hyperleptinemia. In agreement with our hypothesis, the 
group presenting a low delta reduction in deposits showed 
no significant change in leptin concentration (Table 1).

Importantly, hyperleptinemia can impair energy bal-
ance, specifically in its anorexigenic effects upregulating 
α-melanocyte-stimulating hormone (α-MSH).41 Indeed, 
hyperleptinemia can weaken the anti-inflammatory effects 
of adiponectin, the key hormone involved in the modula-
tion of glucose and lipid metabolism in insulin-sensitive 
tissues.42

In summary, the metabolic and inflammatory parame-
ters of the adolescents who lost a high proportion of vis-
ceral adipose tissue (>1.8 cm) improved, while they did 
not in those who had a small reduction (<0.79 cm). 

Therefore, long-term interdisciplinary therapy was shown 
to contribute to the control of related comorbidities.

In conclusion, the present study showed that the magni-
tude of reduction in visceral fat was an independent predictor 
for insulin resistance control, hyperleptinemia and a range of 
altered metabolic conditions observed in obese adolescents.
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Jerry loved the Cleveland Indians baseball team and, even 
though they would always break his heart, he remained 
loyal. During baseball season if you wandered by his 
office, you could often hear the games streaming over the 
Internet

 Joshua W. Knowles, MD, PhD, FAHA, FACC
 Assistant Professor of Medicine
 Division of Cardiovascular Medicine
 Stanford University

Jerry, you showed me how to be passionately dispassion-
ate about what is revealed from real data, about how ideas 
can evolve and sometimes turn on a dime, and how intel-
lectual honesty and integrity are the foundation. You live 
on in us.
PS And I forgive you for the brain damage you gave me in 
doing the first AACE Consensus Conference on the Insulin 
Resistance Syndrome so many years ago!

 Dan Einhorn, MD, FACP, FACE
 Chief, Diabetes and Endocrine Associates
 Medical Director, Scripps Whittier Diabetes Institute
 Clinical Professor, UCSD School of Medicine
 La Jolla, California

As an endocrine fellow and junior faculty member, Dr 
Reaven was always the Father of Insulin Resistance. 
Through kind words, encouragement and advice, he was 
important in my career development as he was for many 
other physician scientists. I remember him warmly and 
wish there were more like him.

 W. Timothy Garvey, MD
 Butterworth Professor and Chair
 Department of Nutrition Sciences
 GRECC Investigator and staff physician
 Birmingham VA Medical Center

Was 2 years into my endocrine practice in 1988 when Dr 
Gerald Reaven described Syndrome X, coincident with the 
descriptions of the Atherogenic Pattern B Dyslipidemia 
Phenotype, and the introduction of the ATP I Cholesterol 
Guidelines. As a clinician, this  coalescence gave me expla-
nations to communicate with patients, with and without 
diabetes, and directions, with the tools available at the 
time, and the drive to learn more, to reduce their risk for 
atherosclerosis burden. Four years later I was honoured 

that he accepted my invitation to be our Keynote Speaker 
for our Annual Orange County, CA, Chapter, ADA, 
Diabetes Management Symposium. So immense his con-
tribution, so famous had he become, yet so humbly he 
accepted a distinguished research clinician plaque as we 
honoured him.

 Paul D. Rosenblit MD, PhD, FACE, FNLA
  Clinical Professor, Medicine (Div. Endocrinology, 

Diabetes, Metabolism),
  University California, Irvine (UCI), School of Medicine, 

Irvine, CA

Many years ago, I was a young electrophysiologist inter-
ested in ventricular arrhythmias and Dr Reaven showed 
me cellular pathways with free fatty acids and electrical 
disturbances. It was amazing how it controlled life-threat-
ening arrhythmia with use of insulin in an extremely high-
triglyceride patient having a myocardial infarction. I will 
never forget that.

 Robert J. Chilton, DO, FACC
 Professor of Medicine
 The University of Texas
 San Antonio, Texas

I first met Jerry Reaven when I was a graduate student in 
the laboratories of Dr Bernard Jeanrenaud and Dr Albert E 
Renold in Geneva in the late 1970s. He paid many visits 
there at our Institut de Biochimie Clinique and also did a 
sabbatical. He was always eager to meet students and I had 
many lively and inspiring scientific discussions with him 
and his wife Eve. I was struck by his enthusiasm and drive 
and could see the joy of doing science in his eyes, and all 
this was very inspiring for someone starting his career in 
medical research. It was so moving for me to give a lecture 
in his memory after all these years at the last WCIRDC 
meeting.

Very few scientists can claim that they have identified a 
disease that is, furthermore, of high prevalence in our 
modern societies. But this applies to Jerry Reaven. 
Metabolic syndrome is now listed as a disease entity 
(E88.81) in the International Classification of Diseases-10, 
avowing to the outstanding contribution of Jerry Reaven 
in bringing this clustering of factors involved in cardio-
metabolic diseases to the attention of clinicians and 
scientists.

Personal Memories
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 Marc Prentki, PhD
  Professor of Nutrition, Biochemistry and Molecular 

Medicine, Université de Montréal,
 Montreal, Canada

In addition to being a renowned scientist, Jerry was an 
ardent baseball fan, particularly of the Cleveland Indians. 
He and I often celebrated our July birthdays by watching the 
Indians play. It was always fun to watch him score baseball 
the ‘old fashion way’ by scorekeeping on a printed baseball 
scorecard and hear him relay stories of watching Bob Feller 
play. He also always refused to apply sunscreen.

 Sun H. Kim, MD, MS
 Associate Professor of Medicine
 Stanford University School of Medicine,
 California

At 8:00 am on 31 Aug 2016, I approached the lecture to a 
Grand Rounds lecture at Stanford School of Medicine. 
Heads went up as my first slide, entitled Insulin Resistance, 
Obesity and Metabolic Syndrome, flickered on. With Gerry 
Reaven sitting in the front row I began by saying, ‘Despite 
conventional wisdom, anyone who thinks they understand 
insulin resistance is simply wrong’. Following the lecture, I 
had the opportunity to visit with Gerry and was struck by a 
very cluttered office, with a dusty desk on which was scat-
tered a half-dozen or so, highly oxidised medallions, 
including the 1988 Banting Medal. Looking back, I carry 
with me the clear impression of a man animated by love of 
science and not accolades. A role model for us all.
With warmth and affection,

 Ronald M. Evans, PhD
 Howard Hughes Medical Institute
 Salk Institute for Biological Studies
 La Jolla, California

Dr Reaven: the giant in research with the gentle touch.
Always willing to hear you and let you know whether in 
his opinion you were right or wrong, and when wrong, let-
ting you know in such a way that it never hurt you. What a 
quality of a man!

 Jaime A. Davidson, MD, FACP, MACE
 Clinical Professor of Medicine
 The University of Texas Southwestern Medical Center
 Dallas, Texas

In 1978, along with Don Chisholm from Sydney, we pub-
lished a paper in Diabetologia – ‘The relationship of insulin 
response to a glucose stimulus over a wide range of glucose 
tolerance’. This demonstrated an inverted U-shaped pattern 
that is now known as ‘The Starlings Curve of the Pancreas’. 
We believed we were the first to describe this.

Within days, I received a polite but pointed note from a 
gentleman called Gerry Reaven from Stanford. He pointed 
out that he had reported this phenomenon 10 years earlier! 
Swallowing my pride, I made contact, and several months 
later while visiting the United States, visited and met Gerry 
in Palo Alto over dinner, for the first time. There we settled 
our ‘differences’ on the matter of publication priority. As 
to the key driving force/s of the Metabolic Syndrome, 
which he called Syndrome X, we differed on this issue, but 
it was the start of a friendship that spanned almost three 
decades.

 Paul Zimmet AO, PhD, FRACP, FRCP, FTSE
  Professor of Diabetes Research, Monash University, 
 Melbourne, Australia

Dr Gerald Reaven was the penultimate clinical investiga-
tor with unquestioned integrity, intellectual curiosity and 
creativity. He served as a role model for multiple genera-
tions of young investigators and I am proud to claim that 
he served as my role model.

 Ralph A. DeFronzo, MD
 Professor of Medicine
 Chief, Diabetes Division
  University of Texas Health Science Center at San 

Antonio (UTHSCSA),
 San Antonio, Texas

Jerry told me that before the Banting lecture, another 
research had turned to him and said, ‘Jerry, no one remem-
bers if you are good but you will be remembered forever if 
you are bad’. To which Jerry replied ‘Here is to my 
infamy’. 

 Sue Kim, MD, MS
 Associate Professor of Medicine 
 Stanford University School of Medicine 
 California

Gerald Reaven was a giant in his field, who posi-
tively influenced the careers of countless individuals, 
including myself. Possessed of an intellectual, inquiring 
mind and amazing drive and energy, he made a contri-
bution that can truly be said to have changed medicine. 
In fact the journal hosting this special edition celebrat-
ing Dr Reaven’s life came into existence because of his 
work. I only really got to know Gerald in the last 15–
20 years of his life and I discovered that the self same 
man who scared the life out of me with his penetrating 
questions in Denmark in the late 1980s was also 
extremely generous and kind as well as a great scientist 
– what a life!
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 Peter J Grant, FMed Sci
 Professor of Medicine
 University of Leeds,
 Leeds UK

After travelling on some of the same circuits a number of 
years ago, Jerry and I realised, more or less simultaneously, 
that the atherogenic dyslipidemia that I had been working 
on for some time looked very much like the lipid compo-
nent of his ‘Syndrome X’. So, sparked in large part by his 
characteristic energy and enthusiasm, we embarked on a 
collaboration that clearly linked these traits, and demon-
strated Jerry’s unerring ability to strike at the heart of a 
question, and to nail the answer with elegance and 
sim plicity.

 Ronald M. Krauss, MD
 Senior Scientist and Director, Atherosclerosis Research,
  Children’s Hospital Oakland Research Institute, 

California

Clinical Chemistry Point/Counterpoint
Point “Metabolic syndrome:  Requiescat in pace” by Jerry 
Counterpoint “Metabolic syndrome: Still Lives” by Grundy
Response “Metabolic syndrome” Just being alive is not 
enough, for as Sportin’ Life points out in Gershwin’s Porgy 
and Bess, “Methuselah lived 900 years, but who calls it liv-
ing, when no gal will give in to him.” by Jerry

 Sun H Kim, Associate Professor of Medicine
 Stanford University School of Medicine, California

Gerald Reaven (right) and Yehuda Handels-
man at the World Congress of Insulin Resist-
ance, Los Angeles, California

Gerald Reaven (left) receives an award from 
Yehuda Handelsman at the World Congress 
of Insulin Resistance, Los Angeles, California 
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